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Abstract

How strongly natural populations are regulated has a long history of debate in ecology.

Here, we discuss concepts of population regulation appropriate for stochastic population

dynamics. We then analyse two large collections of data sets with autoregressive-moving

average (ARMA) models, using model selection techniques to find best-fitting models.

We estimated two metrics of population regulation: the characteristic return rate of

populations to stationarity and the variability of the stationary distribution (the long-term

distribution of population abundance). Empirically, longer time series were more likely

to show weakly regulated population dynamics. For data sets of length ‡ 20, more than

35% had characteristic return times > 6 years, and more than 29% had stationary

distributions whose coefficients of variation were more than two times greater than

would be the case if they were maximally regulated. These results suggest that many

natural populations are weakly regulated.
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I N T R O D U C T I O N

How strongly are the dynamics of natural populations

regulated? This has proved to be a remarkably long-lived

and contentious question. More than 50 years ago, Nichol-

son (1933, 1954) emphasized the importance of density-

dependent processes – changes in birth and death rates with

changes in density – for regulating populations. Per capita

population growth rates must decrease as population

densities increase to stop populations from expanding in

an unbounded exponential way. Nicholson�s emphasis on

density-dependent processes was contested by Andrewartha

& Birch (1954). They noted that for many populations,

density was a poor predictor of per capita population

growth rates. Therefore, emphasis should be placed on

environmental processes that affect populations. This

debate between emphasizing density-dependent, intrinsic

processes vs. extrinsic, environmental processes has per-

sisted to today (e.g. Hunter & Price 1998, 2000; Turchin &

Berryman 2000).

We believe there are three broad and related conceptual

issues that need to be addressed in studies of population

regulation. First, density dependence of some form is

essential for population regulation to stop populations from

exhibiting a random walk behaviour, expanding indefinitely

or declining to certain extinction (Nicholson 1954; Berry-

man 2003); density dependence is required to bound

populations so the variance in the population distribution

does not become infinite. Nonetheless, not only can density

dependence bound population variability, density depen-

dence can also generate intrinsic population variability. For

example, delayed nonlinear density dependence can drive

stable limit cycles in the absence of any stochastic variation

(May et al. 1974), and severe overcompensating density

dependence can lead to chaos through period doubling (May

& Oster 1976). Density dependence has multifarious effects

on population dynamics that make it difficult to equate

density dependence to any specific definition of population

regulation. Therefore, it is not always clear what information

the detection of density dependence gives to our under-

standing of population regulation.

Second, while older literature focused on the detection of

density dependence, treating density independence as a null

hypothesis (Bulmer 1975; Pollard et al. 1987; Den Boer &

Reddingius 1989; Reddingius & Den Boer 1989), most

recent literature has assumed density dependence exists and

focused on estimating its strength. This requires specifying a

statistical model or suite of statistical models that are fit to
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time-series data (Zeng et al. 1998; Osenberg et al. 2002;

Turchin 2003; Brook & Bradshaw 2006). When a particular

model or suite of models is fit to time series, the range of

possible conclusions about population regulation is limited

by the range of dynamics possible in the models. For

example, if only models without time lags are fit to data

showing clear cyclicity (that is not caused by simple period-

doubling), then the estimates of population regulation must

be incomplete; such cyclicity can only be caused by time

lags, and single-species models that do not incorporate time

lags will be incapable of fitting the cyclicity of the data.

Therefore, studying population regulation must involve

model selection from a broad range of models that

encompass the possible dynamics observed in the data

(Shenk et al. 1998; Zeng et al. 1998; Kendall et al. 1999;

de Valpine & Hastings 2002).

Third, there are different possible definitions of popu-

lation regulation (Turchin 1995). Much of the original

debate between Nicholson (1954) and Andrewartha & Birch

(1954) stemmed from a fundamental disagreement about

what is the most important feature of population dynamics.

Nicholson was primarily interested in long-term patterns,

with a well-regulated population being one that remained

within tight bounds for extended periods. Andrewartha and

Birch were interested in explaining the short-term fluctu-

ations of species; they focused on predicting changes in

population densities and equated regulation with predict-

ability from known effects of the environment. With this

disagreement about the question, it is not surprising that

they had different answers. Nonetheless, we believe that

much of their disagreement can be resolved by simulta-

neously investigating both long-term and short-term pat-

terns in population dynamics and applying a concept of

population regulation that is explicitly stochastic.

Here, we first describe two metrics of population regulation

designed for stochastic systems and relate these metrics to the

broader concepts of population regulation championed by

Nicholson (1954) and Andrewartha & Birch (1954). We then

analyse 1633 time series from a wide range of animal species

using autoregressive moving average (ARMA) models and

model selection techniques to identify the best-fitting model.

From the fitted models we use the two metrics to assess the

strength of population regulation. In contrast to previous

surveys of data sets that overlap with those we analysed (Sibly

et al. 2005, 2007; Brook & Bradshaw 2006), we found that, for

the metrics we use, population regulation is weak for a

substantial portion of populations.

Return rates and variability of the stationary distribution

Both to illustrate our measure of population regulation and

to analyse our time-series data, we will use the ARMA(p, q)

model (Box et al. 1994)

ðxt � �x1Þ ¼
Xp

i ¼ 1

biðxt�i � �x1Þ þ
Xq

j ¼ 0

ajet�j ; ð1Þ

where xt is a measure of population density at sample t, �x1
is the long-term mean of the stochastic process, parameters

bi (i = 1,…, p) are the coefficients for an autoregressive

(AR) process of order p, et is a temporally independent

normal random variable, and aj (j = 1, …, q) are the coef-

ficients of a moving average (MA) process of order q. Both

generally and in our specific analyses, population densities

are log-transformed for analyses, so that eqn 1 is a log-linear

model of population dynamics.

Although ecological time series are unlikely to be linear,

by the Wold Representation Theorem (Wold 1938) any

stochastic process can be represented by an infinite-order

MA process. Furthermore, under mild restrictions a pure

MA process can be written as an ARMA process, and the

AR component of the ARMA may absorb much of the

higher-order MA lags (Box et al. 1994). Therefore, although

eqn 1 is linear, it can nonetheless be used to approximate

any nonlinear stochastic process.

We have selected ARMA models because they give a

flexible structure that can accommodate implicitly many

dynamical features that occur in ecological time series (see

Ives et al. 2009). AR lags can be generated if populations are

age or stage structured so that, for example, juveniles

produced in 1 year do not reproduce until several years

hence (Fromentin et al. 2001; Lande 2002; Murdoch et al.

2002). AR lags can also be generated through species

interactions. If, for example, there are p interacting species

with no time lags, then the dynamics of the entire system

can be captured in a single-species model with at most

2p + 1 AR lags (Stark 1999, 2000); for linear systems, this

reduces to p AR lags (Royama 1992; Reinsel 1997; Abbott

et al. 2009). MA lags can similarly be created by species

interactions, with p interacting species generating at most 2p

MA lags, or p–1 MA lags for linear systems. MA lags can

also be caused by measurement error, with a pure AR(p)

process contaminated by measurement error generating an

ARMA(p, p ) 1) process (Staudenmayer & Buonaccorsi

2005). Finally, the environmental variables generating

population variability may in fact be autocorrelated, and

this autocorrelation will be captured in the MA component

of the process. As described below, much of the dynamical

characterization of time series depends on the AR compo-

nent of the ARMA model, and therefore the MA

component serves to absorb the �nuisance� correlations

caused by species interactions, measurement error or

environmental variables.

We have written the ARMA model assuming that the

population dynamics depend only on population densities xt

and unknown sources of stochastic variability et. We do this

only because time-series data typically lack additional
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information on possible environmental or other extrinsic

variables that might affect population dynamics. When

additional information is available, it can be incorporated

directly into the model (Rothery et al. 1997; Ives et al. 2003),

often providing better estimates of other model parameters

(e.g. better estimates of bi) and greater understanding of the

system under study (Dennis & Otten 2000). However, even

if environmental variables can help to explain population

fluctuations, when the environmental variables are them-

selves unpredictable, they can be incorporated into the

stochastic terms et for the sake of characterizing the

population dynamics.

Stochastic populations that persist for long periods have

stationary distributions describing the mean, variance,

autocovariance, and higher statistical moments of the

long-term dynamics (Dennis & Taper 1994; Turchin

1995). To illustrate the stationary distribution, Fig. 1 shows

trajectories from four AR(2) processes as they approach

stationarity. The time-dependent distribution of trajectories

from a given point to the stationary distribution is called the

transition distribution (e.g. Feller 1968). Return to the

stationary distribution is measured by the asymptotic rates at

which the mean, variance and other moments of the

transition distribution approach the stationary distribution.

This is closely related to the more familiar concept of the

return rate of deterministic systems to a fixed equilibrium

point. A common technique in the analyses of deterministic

models is to identify a stable equilibrium point, approximate

the model around the fixed point by linearizing it, and then

determining the characteristic return rate to the equilibrium

point from the eigenvalue of the linear model approxima-

tion (e.g. May 1974). Our approach using ARMA models is

similar, in that we use the ARMA model as a linear

approximation to a stochastic process and then measure the

return rate for this approximation (Ives et al. 2003; p. 305);

our method is analogous to standard approaches in

nonlinear stochastic models such as small noise perturbation

methods (e.g. Gardiner 1990, Ch. 6), although applied to

data rather than stochastic equations.

To correspond to the common measure of return time in

discrete-time deterministic systems (the magnitude of the

dominant eigenvalue of the linearized model), we will

measure the characteristic return time to stationarity by

||k||, the magnitude of the inverse of the minimum root of

the characteristic equation of eqn 1 (Box et al. 1994; see also

Appendix S1). ||k|| depends solely on the AR component
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Figure 1 Example trajectories approaching

the stationary distributions for AR(2) pro-

cesses showing monotonic (a and b) and

cyclic (c and d) approaches to stationarity.

Five trajectories are shown in each panel, and

the transition distributions are shown by the

grey regions that bound ± 1 SD around the

mean. The return rate to stationarity is given

by ||k|| = 0.5 in (a) and (c), and ||k|| = 0.9 in

(b) and (d). Parameter values are (a) b1 = 0.2

and b2 = 0.15, (b) b1 = 0.57 and b2 = 0.3,

(c) b1 = 0.3 and b2 = )0.25 and (d) b1 = 0.9

and b2 = )0.81; in all panels rE = 1.
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of an ARMA model. For the case in which k is real, the

asymptotic rate at which the mean of the transition

distribution, �xt , approaches the mean of the stationary

distribution, �x1, is given by �xt � �x1 ¼ kð�xt�1 � �x1Þ, and

the asymptotic rate at which the standard deviation rt

approaches the standard deviation of the stationary distri-

bution, r1, is rt � r1 ¼ kk kðrt�1 � r1Þ. Thus, if

||k|| = 0 the return to the stationary distribution is

immediate, whereas as ||k|| approaches 1 the rate of return

drops to zero. For ||k|| ‡ 1, the process is non-stationary,

that is, the stationary distribution does not exist. The case in

which k is complex is analogous, although oscillatory

dynamics are laid over the trajectories converging to the

stationary distribution. The panels in Fig. 1 show both fast

(||k|| = 0.5, Fig. 1a,c) and slow (||k|| = 0.9, Fig. 1b,d)

rates of return to stationarity.

As a second measure of population regulation, we use the

variability of the stationary distribution relative to the

variability of the unexplained environmental variability (Ives

1995; Ives et al. 2003). Specifically, we use the ratio r1 ⁄rE
where rE is the standard deviation in the MA component of

the model,

rE ¼ re

Xq

j ¼ 0

a2
j

 !1=2

and re is the standard deviation of et (eqn 1). A value of

r1 ⁄ rE = 1 represents strong population regulation; in this

case, the standard deviation of the (log) population density

equals the standard deviation of the environmental variation

driving population fluctuations. As population regulation

becomes weaker, r1 ⁄ rE increases because populations are

only weakly drawn back to the mean of the stationary dis-

tribution. Standardizing by rE factors out differences in the

environmental severity experienced by different popula-

tions, measured by the year-to-year shocks in population

densities contained within re. Because the MA component

of the ARMA model may contain variability that is driven by

intrinsic factors (such as interactions among species, see

above), rE may overestimate the true environmental vari-

ability experienced by a population; this will cause r1 ⁄rE to

underestimate the true impact of intrinsic factors on pop-

ulation variability and hence overestimate the strength of

population regulation.

For linear models there is a close mathematical relation-

ship between the return rate to stationarity and the

variability of the stationary distribution (Ives 1995); in

comparing stochastic processes with the same degree of

extrinsic stochasticity (rE), rapid return rates will be

associated with stationary distributions having low values

of r1. This is because the same processes that cause

populations to return rapidly to the stationary distribution

will also act to narrowly bound the stochastic fluctuations of

the population at stationarity. This is shown in Fig. 2a, in

which r1 ⁄rE for three ARMA processes are plotted against

||k||. Although different ARMA(p, q) processes have

different values of r1 ⁄rE for the same value of ||k||, they

all show an increase in r1 ⁄ rE as ||k|| increases, and as

||k|| approaches 1, r1 ⁄ rE approaches infinity.

It is instructive to compare our two metrics of population

regulation with both Nicholson�s (1933, 1954) and Andre-

wartha & Birch�s (1954) views on population regulation.

Nicholson viewed regulated populations as those that are

quickly drawn towards an equilibrium, thus having low

values of ||k||. This then causes populations to be more

tightly bounded, thereby having lower values of r1 ⁄rE.

Thus, Nicholson�s views of population regulation are closely

allied to both of our measures.
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Figure 2 Relationship between the return rate to stationarity determined by ||k|| and (a) the standard deviation of the stationary distribution

relative to the environmental variability, r1 ⁄ rE, and (b) the proportion of the variance in the stationary distribution r1
2 that is explained by

the environmental variance rE
2 (i.e. rE

2 ⁄ r12). In each panel results for an AR(1) (thick line), an AR(2) (dashed line) and an AR(3) (thin line)

are shown. ||k|| is varied by changing b1, b2 and b3 in the AR(1), AR(2) and AR(3) models, respectively, and the other autoregressive

coefficients are set to zero. Setting the other coefficients to zero caused the differences between AR(1), AR(2) and AR(3) models to be large.
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Andrewartha and Birch focused on explaining short-term

(year-to-year) population fluctuations in terms of environ-

mental factors. In their classic study on thrips, Thrips imaginis

(Andrewartha & Birch 1954, pp. 568–583), they regressed

yearly peak thrips density in a rose hedge against temper-

ature and rainfall variables; these environmental variables

explained almost 80% in the annual variance in peak log

densities. This analysis is comparable with applying eqn 1

while setting the AR coefficients bi to zero and using the et

terms to represent the influence of the environment on

density; their analysis regresses et against environmental

variables. Although for the general case we consider here we

do not have direct measurements of the environment, we

can use eqn 1 to ask what proportion of the temporal

variance in population densities at the stationary distribution

can be explained solely by et excluding information on past

densities, xt – 1, xt – 2, etc.; this is consistent with Andre-

wartha and Birch�s view that population densities have little

predictive power in explaining population fluctuations.

Figure 2b shows the environmental variance scaled by the

population variance, rE
2 ⁄ r12, graphed vs. ||k|| for AR(1),

AR(2) and AR(3) processes. When the rate of return to

stationarity is rapid (||k|| is close to zero), most of the

temporal variance in population density is driven solely by

environmental factors. This occurs because the density at a

given time is only weakly determined by the previous

densities, so the only remaining source of variation is

environmental. Since Andrewartha & Birch�s (1954) regres-

sion study found that a very high proportion of the variance

in population density could be explained by environmental

factors, their work suggests a high rE
2 ⁄ r12 for their thrips.

This comparison between Nicholson�s emphasis on long-

term population variability and Andrewartha and Birch�s
emphasis on short-term variability shows a simple resolution

to their disagreement about population regulation. Long-

term population variance is reduced when return rates to

stationarity are rapid (Fig. 2a). Furthermore, environmental

factors have their strongest effect, and density has its

weakest effect, when return rates are rapid (Fig. 2b; Rothery

et al. 1997; Dennis & Otten 2000; Brook & Bradshaw 2006).

Therefore, Nicholson�s conclusion that populations are

strongly regulated is completely consistent with Andrewar-

tha and Birch�s conclusion that environmental factors

explain year-to-year fluctuations in population densities. If

populations were not strongly regulated (||k|| far from

zero), then previous population densities would be stronger

predictors of year-to-year fluctuations. In summary, there is

no conflict between Nicholson, and Andrewartha and Birch;

return rates to stationarity must be rapid both for long-term

population fluctuations to be narrowly bounded and for

most of the year-to-year fluctuations to be explained by

environmental variables rather than previous population

densities.

Many studies on population regulation have investigated

the strength of density dependence (e.g. Turchin 1990;

Holyoak 1992; Woiwod & Hanski 1992; Saether et al. 2005;

Sibly et al. 2005; Brook & Bradshaw 2006). Therefore, it is

useful to relate our metrics of population regulation to

density dependence. Unfortunately, the relationship be-

tween the return rate to the stationary distribution and the

strength of direct (non-lagged) or lagged density dependence

is complex for all but the simplest models. The strength of

direct density dependence can be described by how the

change in density between successive samples, Dxt = xt –

xt – 1, depends on the initial density xt – 1 (Fig. 3). For an

AR(1) model this slope is simply given by b1 – 1 = k – 1,

so that increasing the rate of return to stationarity

(decreasing b1 = k) corresponds to stronger density depen-

dence provided b1 > 0 (Fig. 3a,b). In contrast, for models

of higher order the relationship between return rates and

direct density dependence is more complex, and direct

density dependence can decrease with increasing rates of

return to stationarity (Fig. 3c,d). This example illustrates the

difficulty with equating density dependence with population

regulation in all but the simplest cases when there are no

time lags.

We should note that our metrics of population regulation

assume that a stationary distribution exists. This assumption

makes the metrics inappropriate for application to situations

in which populations are possibly declining to extinction, as

in population viability analyses, or situations in which

populations are increasing exponentially, as for some

invasive species. Nonetheless, fitting ARMA models may

often detect non-stationary processes as those giving

estimates of ||k|| equal to one.

Finally, issues also arise when the metrics are applied to

highly nonlinear processes that could generate sustained

population fluctuations even in the absence of environ-

mental stochasticity, for example stable limit cycles or

chaotic dynamics. The metrics are based on approximating

the stochastic process with a linear model that is incapable

of producing such sustained, internally driven fluctuations.

In these situations, however, the metrics will likely be

conservative, in the sense that they will indicate stronger

population regulation than might be the case. This is easy to

show for the metric r1 ⁄rE. In this metric, r1
2 can be

thought of as the total variance of the stochastic process and

rE
2 as the variance that is unexplained by the linear model.

If there are strong nonlinearities, then rE
2 will overestimate

the true environmental variance by attributing to the

environment the variability in the residuals that cannot be

explained by the linear model. Therefore, r1 ⁄ rE will

underestimate the variability of the stationary distribution

relative to the environmental variability (Ives 1995). (We

should note, however, that this argument applies only if a

single model is fit to the data; if model selection is used to
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identify the AR and MA lags, p and q, then nonlinearities

may affect which model is selected and hence the estimate

of r1 ⁄ rE.) Because r1 ⁄rE will likely be an underestimate,

we suspect that in most cases the metric ||k|| will also be an

underestimate, predicting more rapid return times for the

nonlinear case than actually occurs. Nonetheless, at present

this is only a conjecture, and the transition distribution for

nonlinear processes can show complex behaviours (e.g. Yao

& Tong 1994) that make generalizations risky. The main

difficulty limiting the assessment of population regulation in

highly nonlinear population processes is determining the

strength and character of the nonlinearities given the short

length of typical ecological time series; ecological time series

will rarely allow the rigorous validation on any specific

nonlinear model. In the face of this difficulty, a prudent

approach is to use a linear approximation that likely leads to

conservative conclusions.

Time-series analyses

We analysed two collections of time-series data sets to

estimate the two metrics of population regulation, ||k|| and

r1 ⁄ rE. First, we used 49 data sets from the Global

Population Dynamics Database (GPDD; NERC Centre for

Population Biology 1999) and one data set from the United

States Forest Service (2007) that were analysed by Abbott

et al. (2009). These 50 data sets consist of abundances

collected annually for 35–157 years, with a mean length of

60.9 years, and each represents a unique species. From the

GPDD�s very large collection of time series, we chose these

data sets haphazardly with the goal of selecting long time

series with few missing data points. We will refer to these 50

data sets as collection A. Second, collection B consists of

1583 data sets from the GPDD that were assembled by

Sibly et al. (2005, 2007); they provided us with 1780 time

series from which we removed 195 data sets of length < 10

and two additional data sets for which our ARMA fitting

procedure failed to converge. Because relatively few long

ecological time series exist, collection B contains many

shorter time series, with an average length of 22.1 years. Not

only did we analyse all 1583 data sets in collection B, but we

also analysed the subset of 567 data sets having length at

least 20; this subset had an average length of 35.9 years.

We fit ARMA(p, q) models to each data set using

restricted maximum likelihood estimation (REML) follow-

ing the procedure of Ives et al. (2009). We considered AR

lags of p = 1–3 years and MA lags q = 0–2 years. We then

computed ||k|| and r1 ⁄rE for the best-fitting model,

where we selected the best-fitting model as that with the

lowest small-sample-size-corrected Akaike�s Information
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Figure 3 Strength of density dependence in

AR(1) (a, b) and AR(2) (c, d) processes for

different rates of return to stationarity, ||k||.

Density dependence is measured by the

relationship between the change in densities

between samples t – 1 and t, Dxt = xt –xt –1,

and the density at sample t – 1, xt – 1; the

steeper the slope (i.e. the more negative), the

stronger is density dependence. Each panel

gives a representative time series of length

30, and the line gives the theoretical rela-

tionship between Dxt and xt – 1 at the

stationary distribution, calculated as the

expectation of Dxt conditional on the value

of xt – 1. Model parameters are: (a) b1 = 0.5,

(b) b1 = 0.9, (c) b1 = 1 and b2 = )0.25,

and (d) b1 = 0.9 and b2 = )0.81; in all

panels rE = 1.
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Criterion (AICc) value; in a simulation study, Malgras &

Debouzie (1997) found the performance of AICc superior to

common alternatives. Our procedure has three sources of

bias that generally lead to underestimates of ||k|| and

r1 ⁄ rE (Ives et al. 2009), and hence overestimates of the

strength of population regulation. First, the REML param-

eter estimates obtained from a given model tend to be

biased (McGilchrist 1989; Cheang & Reinsel 2003). Second,

bias arises in the model selection process; when the

incorrect model is selected, it is more likely to give lower

estimates of ||k|| and r1 ⁄rE than the correct model (Ives

et al. 2009). Third, although the MA structure of the models

can absorb some effects of measurement error on the

estimates of ||k|| and r1 ⁄rE, measurement error none-

theless will often lead to underestimates (Staudenmayer &

Buonaccorsi 2005). These sources of bias make our analyses

conservative, in the sense that they decrease the chances of

identifying weakly regulated populations.

Because we are analyzing a large number of data sets, we

are more concerned with bias in the estimates than with

their precision (e.g. the width of confidence intervals of

||k|| and r1 ⁄rE). Even though precision may be low,

especially for short time series (Ives et al. 2009), precision in

the estimates for individual time series will not greatly affect

our summary descriptions of a large collection of data sets,

for example, that a certain percentage of data sets have

||k|| > 0.9. The precision of our summary descriptions is

determined more by the number of time series in the

collections of data sets than the precision in the estimates

for each time series.

Considering the 567 data sets in collection B having

length at least 20, the estimates of ||k|| and r1 ⁄ rE for both

collections A and B had similar distributions (Fig. 4). Here,

for discussion we select ||k|| > 0.9 and r1 ⁄rE > 2 to

represent weak population regulation, recognizing that the

full distributions of values of ||k|| and r1 ⁄rE in Fig. 4 give

more complete pictures of the results. For collection A, 42%

of the time series had ||k|| > 0.9, and 40% had

r1 ⁄rE > 2, while for collection B (for data sets of length

‡ 20), 35% of the time series had ||k|| > 0.9, and 28% had

r1 ⁄rE > 2. (A similar histogram for ||k|| for all 1583 data

sets in collection B is given in Fig. S1.) In the analyses, we

also distinguished between estimates from best-fitting

models that were AR(1) models (black histograms) and

those from ARMA(p, q) models with p > 1 and ⁄ or q > 0.

Those data sets giving high estimates of ||k|| and r1 ⁄ rE
were more often more-complex models (i.e. higher values of

p and ⁄ or q) than those giving lower estimates of ||k|| and

r1 ⁄rE, suggesting that data sets with more complex,

higher-order dynamics are also likely to be weakly regulated.

The lower estimates of ||k|| and r1 ⁄rE for collection B

relative to collection A are likely due in part to the known

downward bias in the estimates that are exaggerated for

smaller sample sizes (Appendix S2). Considering all 1583

data sets in collection B with length ‡ 10, there is a strong

increase in the estimates of ||k|| with increasing time series

length (Fig. 5a). Furthermore, the complexity of the best-

fitting model, measured by p + q, increases with increasing

length of the time series (Fig. 5b). These increases in ||k||

and p + q with time series length show no signs of reaching
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Figure 4 The distribution of estimates of

||k|| calculated from the corrected Akaike�s
Information Criterion (AICc) best-fitting

ARMA(p, q) models for (a) the 50 data sets

in collection A, and (c) the 567 data sets in

collection B with length ‡ 20. (b) and (d)

give, for the same collections of data sets,

the distributions of the estimates of standard

deviation of the stationary distribution rela-

tive to the environmental variability, r1 ⁄ rE.

The black bars give the data sets for which

the best-fitting model was an AR(1).
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an asymptote but instead continue to rise even for data sets

over length 30. We performed a simulation study to

investigate whether this pattern could be due solely to bias

in fitting ARMA models to data (Appendix S2). This study

showed that the results depend on the underlying popula-

tion process; a model giving oscillatory dynamics led to

better estimates of ||k|| and p + q for shorter time series

than a model giving non-oscillatory dynamics (Fig. S3).

Nonetheless, both models showed strong effects of the

length of the time series simulated, consistent with our

empirical observations (Fig. 5).

D I S C U S S I O N

A large proportion of the data sets we analysed is weakly

regulated. We obtained these results even though the

methods we used likely gave underestimates of ||k|| and

r1 ⁄ rE ; that is, regulation is likely even weaker than our

estimates. We measured population regulation by ||k|| that

gives the rate of return of a population to its stationary

distribution. If we use a threshold of 0.9 < ||k|| to

categorize weakly regulated populations, 42% and 35% of

the populations from collections A (50 longer data sets) and

B (567 data sets from Sibly et al. (2005) with length ‡ 20),

respectively, were weakly regulated (Fig. 4). A value of

||k|| = 0.9 corresponds to a characteristic population

return time of roughly 6 years (0.96 » 0.5) when populations

are measured on a log scale; for a population that is some

distance away from the mean of its stationary distribution, it

takes 6 years for the expected log population density to

halve that distance. Thus, the weakly regulated population

�remembers� past densities.

We also assessed the strength of population regulation in

terms of the standard deviation of the population stationary

distribution relative to the distribution of environmental

variability, r1 ⁄ rE ; this measure generally increases in

tandem with ||k|| (Fig. 2a). For collections A and B (with

length ‡ 20), respectively, 40% and 28% had values of

r1 ⁄ rE > 2. For log-transformed population densities, r1
approximates (but underestimates) the coefficient of vari-

ation of the untransformed population densities (Stuart &

Ord 1987); the threshold of r1 ⁄rE = 2 therefore corre-

sponds to a coefficient of variation that is two times greater

than the case of strong population regulation when

r1 ⁄ rE = 1. Thus, a large proportion of populations were

weakly regulated as measured by their variability.

A striking methodological finding in our analyses is that

longer time series were more likely to give estimates of ||k||

indicating weak population regulation, and were more likely

to reveal more-complex dynamics (Fig. 5; Appendix S2). As

data sets in collection B increased in length from 30 to

60 years, the mean estimates of ||k|| increased from 0.6 to

0.85, and the average complexity (measured by p + q)

increased from 1.6 to 2.6. This problem represents a serious

challenge for studies of population dynamics. Very long

ecological time series are rare, and our results suggest that

even data sets of length 60 years may be too short to reliably

characterize the population dynamics.

Our conclusions about prevalence of weak population

regulation in collection B differ markedly from those of

Sibly et al. (2007) who analysed a subset of the same initial

collection of 1780 data sets from Sibly et al. (2005). This

contrast is caused by three differences between our analyses

(Appendix S2). First, while starting with 1780 data sets, Sibly

et al. (2007) applied a series of filters that reduced the

number of data sets to 524, and these data sets were on

average shorter than the data sets we analysed. The mean

length of the 524 data sets was 17.5 years compared with a

mean of 22.1 for collection B, and 35.9 for the subset of

collection B with length ‡ 20 (Fig. 4). Shorter time series are
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Figure 5 For collection B (all 1583 data sets), the average of

estimates of ||k|| calculated from the best-fitting ARMA(p, q) model,

and the average value of p + q used as a measure of complexity of

the best-fitting model. Data sets were binned into eight equally

sized groups, and the points represent the average of each group.
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more likely to give estimates of stronger population

regulation (Fig. 5a), and the filtering procedure used by

Sibly et al. (2007) caused a large decrease in the proportion

of time series with ||k|| > 0.9 (Appendix S2). Second, Sibly

et al. (2007) only fit models without time lags. In our

analyses, models with longer time lags (higher p and ⁄ or q)

were more likely to give larger estimates of ||k||, and

therefore by ignoring time lags Sibly et al. (2007) were more

likely to infer stronger population regulation. Third, the

conditional least squares estimation procedure that Sibly

et al. (2007) used produces downwards bias in ||k|| and

hence overestimates of the strength of population regula-

tion. Although our estimation procedure (REML) also

produces downwards bias, this bias is less severe than

conditional least squares. Of these three differences, the first

– filtering in a way that removes long data sets – is

responsible for most of the contrast between our results and

those of Sibly et al. (2007).

Our analyses reveal that a considerable proportion of data

sets shows weak population regulation, and populations that

are weakly regulated present several ecological challenges.

For a weakly regulated population, it can be difficult to

determine even its simplest property, its mean value. For

example, consider a data set of length 100 years for a

strongly regulated population (||k|| = 0) governed by an

AR(1) process, and suppose the year-to-year variance in log

population density is 1. Then the standard error of the

estimate of the mean log population density is 0.1. If there

were another population with ||k|| = 0.9 that experienced

the same impact of environmental fluctuations on its per

capita population growth rate, then 1891 years of data

would be required to achieve the same precision in the

estimate of the mean.

Even though properties of the stationary distribution (e.g.

the long-term mean or variance of the population) are more

difficult to estimate for weakly regulated populations, the

same populations are simultaneously more predictable in the

short term, as population densities in the future are more

strongly determined by present and past population

densities (Fig. 2b). Thus, for a population with ||k|| = 0,

information about the population density this year gives no

information about the density next year; for the hypothetical

population described in the last paragraph, the standard

error of the estimate of the predicted population density will

be 1. On the other hand, for the population with

||k|| = 0.9, knowing the density this year will reduce the

standard error of the prediction for next year to 0.44 when

scaled by the standard deviation of the stationary distribu-

tion, r1. Thus, from the practical standpoint of what can be

learned about populations, the strength of population

regulation makes a large difference.

Ecologists have used the strength of population regula-

tion to infer ecological mechanisms driving population

dynamical processes. For example, strong regulation might

imply intraspecific competition, with populations main-

tained close to their carrying capacities set by food

availability. Conversely, weakly regulated populations might

be sensitive to environmental fluctuations or predators that

keep densities well below carrying capacity. We argue

strongly against trying to infer mechanisms from the

strength of population regulation. It is easy to produce

counter-examples for any supposed relationship between

the strength of population regulation and some ecological

mechanism. For example, the dipteran seed predator

Euphranta connexa experiences strong intraspecific competi-

tion; in a 22-year study, the predation rate by E. connexa on

host plant seed pods was > 90% in 11 of the 22 years

(Solbreck & Ives 2007). Nonetheless, E. connexa populations

fluctuated over two orders of magnitude due to two-orders-

of-magnitude fluctuations in seed abundance; while they

could be viewed as remaining close to carrying capacity,

their carrying capacity fluctuated. Similarly, weak population

regulation cannot be associated with strong effects of

environmental fluctuations. In fact, the predictive power of

environmental variables for the future density of thrips

found by Andrewartha & Birch (1954) is only possible for

strongly regulated populations for which current population

density has no predictive power for future densities.

While we caution against inferring mechanisms from

patterns of population regulation, we nonetheless think that

the strength of population regulation is a fundamental

property exhibited by populations. It is as fundamental as

the mean or the variance of the stationary distribution. As a

descriptor of population dynamics, population regulation

provides the context in which mechanisms driving popu-

lation dynamics should be investigated.

A C K N O W L E D G E M E N T S

We sincerely thank Richard Sibly and Daniel Barker for

sending us their data sets and helping to pinpoint how our

analyses differ. Funding for this work was provided by NSF

grants MSPA-CSE 0434329, DEB 0415670, and DEB

0816613 to ARI.

R E F E R E N C E S

Abbott, K.C., Ripa, J. & Ives, A.R. (2009). Environmental variation

in ecological communities and inferences from single-species

data. Ecology, 90, 1268–1278.

Andrewartha, H.G. & Birch, L.C. (1954). The Distribution and

Abundance of Species. Chicago University Press, Chicago.

Berryman, A.A. (2003). On principles, laws and theory in popu-

lation ecology. Oikos, 103, 695–701.

Box, G.E.P., Jenkins, G.M. & Reinsel, G.C. (1994). Time Series

Analysis: Forecasting and Control, 3rd edn. Prentice Hall, Engle-

wood Cliffs, NJ.

Letter Regulation in ecological time series 29

� 2009 Blackwell Publishing Ltd/CNRS



Brook, B.W. & Bradshaw, C.J.A. (2006). Strength of evidence for

density dependence in abundance time series of 1198 species.

Ecology, 87, 1445–1451.

Bulmer, M.G. (1975). Statistical analysis of density dependence.

Biometrics, 31, 901–911.

Cheang, W.K. & Reinsel, G.C. (2003). Finite sample properties of

ML and REML estimators in time series regression models with

long memory noise. J. Stat. Comput. Simul., 73, 233–259.

Den Boer, P.J. & Reddingius, J. (1989). On the stabilization of

animal numbers. Problems of testing. 2. Confrontation with data

from the field. Oecologia, 79, 143–149.

Dennis, B. & Otten, M.R.M. (2000). Joint effects of density

dependence and rainfall on abundance of San Joaquin kit fox.

J. Wildl. Manage., 64, 388–400.

Dennis, B. & Taper, B. (1994). Density dependence in time series

observations of natural populations: estimation and testing. Ecol.

Monogr., 64, 205–224.

Feller, W. (1968). An Introduction to Probability Theory and its Appli-

cations, Vol. 1. John Wiley & Sons, New York, NY.

Fromentin, J.M., Myers, R.A., Bjornstad, O.N., Stenseth, N.C.,

Gjosaeter, J. & Christie, H. (2001). Effects of density-dependent

and stochastic processes on the regulation of cod populations.

Ecology, 82, 567–579.

Gardiner, C.W. (1990). Handbook of Stochastic Methods for Physics,

Chemistry and the Natural Sciences, 2nd edn. Springer-Verlag,

Berlin.

Holyoak, M. (1992). Detection of density dependence from annual

censuses of bracken-feeding insects. Oecologia, 91, 425–430.

Hunter, M.D. & Price, P.W. (1998). Cycles in insect populations:

delayed density dependence or exogenous driving variables?.

Ecol. Entomol., 23, 216–222.

Hunter, M.D. & Price, P.W. (2000). Detecting cycles and delayed

density dependence: a reply to Turchin and Berryman. Ecol.

Entomol., 25, 122–124.

Ives, A.R. (1995). Measuring resilience in stochastic systems. Ecol.

Monogr., 65, 217–233.

Ives, A.R., Dennis, B., Cottingham, K.L. & Carpenter, S.R. (2003).

Estimating community stability and ecological interactions from

time-series data. Ecol. Monogr., 73, 301–330.

Ives, A.R., Abbott, K.C. & Ziebarth, N.L. (2009). Statistical evalua-

tion of density dependence using ARMA models. Ecology, in press.

Kendall, B.E., Briggs, C.J., Murdoch, W.W., Turchin, P., Ellner,

S.P., McCauley, E. et al. (1999). Why do populations cycle? A

synthesis of statistical and mechanistic modeling approaches.

Ecology, 80, 1789–1805.

Lande, R. (2002). Estimating density dependence in time-series of

age-structured populations. Philos. Transact. R. Soc. Lond. B Biol.

Sci., 357, 1179–1184.

Malgras, J. & Debouzie, D. (1997). Can ARMA models be used

reliably in ecology?. Acta Oecol. Int. J. Ecol., 18, 427–447.

May, R.M. (1974). Stability and Complexity in Model Ecosystems, 2nd

edn. Princeton University Press, Princeton, NJ.

May, R.M. & Oster, G.F. (1976). Bifurcations and dynamic com-

plexity in simply ecological models. Am. Nat., 110, 573–599.

May, R.M., Conway, G.R., Hassell, M.P. & Southwood, T.R.E.

(1974). Time delays, density-dependence and single-species

oscillations. J. Anim. Ecol., 43, 747–770.

McGilchrist, C.A. (1989). Bias of ML and REML estimators in

regression models with ARMA errors. J. Stat. Comput. Simul., 32,

127–136.

Murdoch, W.W., Kendall, B.E., Nisbet, R.M., Briggs, C.J.,

McCauley, E. & Bolser, R. (2002). Single-species models for

many-species food webs. Nature, 417, 541–543.

NERC Centre for Population Biology (1999). The Global Population

Dynamics Database. Available at: http://www.sw.ic.ac.uk/cpb/

cpb/gpdd.html.

Nicholson, A.J. (1933). The balance of animal populations. J. Anim.

Ecol., 2, 132–178.

Nicholson, A.J. (1954). An outline of the dynamics of animal

populations. Aust. J. Zool, 2, 9–65.

Osenberg, C.W., St Mary, C.M., Schmitt, R.J., Holbrook, S.J.,

Chesson, P. & Byrne, B. (2002). Rethinking ecological inference:

density dependence in reef fishes. Ecol. Lett., 5, 715–721.

Pollard, E., Lakhani, K.H. & Rothery, P. (1987). The detection of

density-dependence from a series of annual censuses. Ecology, 68,

2046–2055.

Reddingius, J. & Den Boer, P.J. (1989). On the stabilization of

animal numbers. Problems of testing. 1. Power estimates and

estimation errors. Oecologia, 78, 1–8.

Reinsel, G.C. (1997). Elements of Multivariate Time Series Analysis, 2nd

edn. Springer, New York.

Rothery, P., Newton, I., Dale, L. & Wesolowski, T. (1997). Testing

for density dependence allowing for weather effects. Oecologia,

112, 518–523.

Royama, T. (1992). Analytical Population Dynamics. Chapman and

Hall, London.

Saether, B.E., Lande, R., Engen, S., Weimerskirch, H., Lillegard,

M., Altwegg, R. et al. (2005). Generation time and temporal

scaling of bird population dynamics. Nature, 436, 99–102.

Shenk, T.M., White, G.C. & Burnham, K.P. (1998). Sampling

variance effects on detecting density dependence from temporal

trends in natural populations. Ecol. Monogr., 68, 445–463.

Sibly, R.M., Barker, D., Denham, M.C., Hone, J. & Pagel, M.

(2005). On the regulation of populations of mammals, birds,

fish, and insects. Science, 309, 607–610.

Sibly, R.M., Barker, D., Hone, J. & Pagel, M. (2007). On the sta-

bility of populations of mammals, birds, fish and insects. Ecol.

Lett., 10, 970–976.

Solbreck, C. & Ives, A.R. (2007). Density dependence vs. inde-

pendence, and irregular population dynamics of a swallow-wort

fruit fly. Ecology, 88, 1466–1475.

Stark, J. (1999). Delay embeddings for forced systems. I. Deter-

ministic forcing. J. Nonlinear Sci., 9, 255–332.

Stark, J. (2000). Observing complexity, seeing simplicity. Philos.

Transact. R. Soc. Lond. A Math. Phys. Eng. Sci., 358, 41–61.

Staudenmayer, J. & Buonaccorsi, J.R. (2005). Measurement error

in linear autoregressive models. J. Am. Stat. Assoc., 100, 841–

852.

Stuart, A. & Ord, J.K. (1987). Kendall�s Advanced Theory of Statistics,

Vol. 1: Distribution Theory. Oxford University Press, New York,

NY.

Turchin, P. (1990). Rarity of density dependence or population

regulation with lags?. Nature, 344, 660–663.

Turchin, P. (1995). Population regulation: old arguments and a new

synthesis. In: Population Dynamics: New Approaches and Synthesis

(eds Cappuccino, N. & Price, P.W.). Academic Press, San Diego,

pp. 19–40.

Turchin, P. (2003). Dynamical effects of plant quality and

parasitism on population cycles of larch budmoth. Ecology, 84,

1207–1214.

30 N. L. Ziebarth, K. C. Abbott and A. R. Ives Letter

� 2009 Blackwell Publishing Ltd/CNRS



Turchin, P. & Berryman, A.A. (2000). Detecting cycles and delayed

density dependence: a comment on Hunter & Price (1998). Ecol.

Entomol., 25, 119–121.

United States Forest Service (2007). Gypsy Moth Digest. Available at:

http://www.na.fs.fed.us/fhp/gm/defoliation/index.shtm.

de Valpine, P. & Hastings, A. (2002). Fitting population models

incorporating process noise and observation error. Ecol. Monogr.,

72, 57–76.

Woiwod, I.P. & Hanski, I. (1992). Patterns of density dependence

in moths and aphids. J. Anim. Ecol., 61, 619–629.

Wold, H. (1938). A Study in the Analysis of Stationary Time Series.

Almqvist & Wiksells, Uppsala, Sweden.

Yao, Q.W. & Tong, H. (1994). On prediction and chaos in sto-

chastic systems. Philos. Transact. R. Soc. Lond. A Math. Phys. Eng.

Sci., 348, 357–369.

Zeng, Z., Nowierski, R.M., Taper, M.L., Dennis, B. & Kemp, W.P.

(1998). Complex population dynamics in the real world: mod-

eling the influence of time-varying parameters and time lags.

Ecology, 79, 2193–2209.

S U P P O R T I N G I N F O R M A T I O N

Additional Supporting Information may be found in the

online version of this article:

Figure S1 Estimates of ||k|| calculated for collection B for
different filtering steps and analyses used by Sibly et al.
(2007).

Figure S2 Distribution of (a) ||k|| and (b) p + q for
collection B (only data sets with length ‡ 20) when model
selection is performed including models with linear
detrending.

Figure S3 Simulation study of the effects of time series
length on the estimates of (a) ||k|| and (b) p + q.

Appendix S1 Mathematical properties of ARMA models.

Appendix S2 Comparison with Sibly et al. (2007).

As a service to our authors and readers, this journal provides

supporting information supplied by the authors. Such

materials are peer-reviewed and may be re-organized for

online delivery, but are not copy-edited or typeset. Technical

support issues arising from supporting information (other

than missing files) should be addressed to the authors.

Editor, Jean-Michel Gaillard

Manuscript received 8 May 2009

First decision made 17 June 2009

Second decision made 30 July 2009

Manuscript accepted 3 September 2009

Letter Regulation in ecological time series 31

� 2009 Blackwell Publishing Ltd/CNRS


