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Email: daijianglee@gmail.com 1. Model-based approaches are increasingly popular in ecological studies. A good
Funding information example of this trend is the use of joint species distribution models to ask ques-
NSF, Grant/Award Number: DEB-1240804 tions about ecological communities. However, most current applications of model-
Handling Editor: Samantha Price based methods do not include phylogenies despite the well-known importance of

phylogenetic relationships in shaping species distributions and community com-
position. In part, this is due to a lack of accessible tools allowing ecologists to fit
phylogenetic species distribution models easily.

2. To fill this gap, the r package phyr (pronounced fire) implements a suite of metrics,
comparative methods and mixed models that use phylogenies to understand and
predict community composition and other ecological and evolutionary phenom-
ena. The phyr workhorse functions are implemented in C++ making all calcula-
tions and model estimations fast.

3. phyr can fit a variety of models such as phylogenetic joint-species distribution
models, spatiotemporal-phylogenetic autocorrelation models, and phyloge-
netic trait-based bipartite network models. phyr also estimates phylogenetically
independent trait correlations with measurement error to test for adaptive
syndromes and performs fast calculations of common alpha and beta phyloge-
netic diversity metrics. All phyr methods are united under Brownian motion or
Ornstein-Uhlenbeck models of evolution, and phylogenetic terms are modelled
as phylogenetic covariance matrices.

4. The functions and model formula syntax we propose in phyr provide an easy-to-
use collection of tools that we hope will ignite the use of phylogenies to address a

variety of ecological questions.
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1 | INTRODUCTION

Ecological communities are collections of species that occur within
the same geographical area. Which species occur within communities
depends on the dispersal ability of species to enter the community,
the environmental conditions that they find there and the interactions
that they have with other species in the community. For example, the
larvae of an aquatic insect species might only occur in a particular
lake if its adult stage has long-distance flight capabilities, if it can tol-
erate the low pH of the lake and if it can avoid the predators that
are common. These three processes—dispersal, environmental tol-
erance and species interactions—depend on the traits that species
possesses and hence reflect evolutionary history and biogeographic
processes (Gerhold, Carlucci, Proches, & Prinzing, 2018; Warren,
Cardillo, Rosauer, & Bolnick, 2014). Differences in community com-
position among locations depend on the variation in abiotic and biotic
characteristics of the locations (Whittaker, 1956). Continuing with
our example of aquatic insects, an insect species might occur in two
nearby lakes because they both have low pH, or because they have
the same predator community. Nearby lakes might also have the same
insect species if the adult insects readily disperse between lakes.
Thus, understanding the composition of a community, and the varia-
tion in composition among communities, requires understanding both
species traits and environmental variables that together govern what
species can occur where, and whether they can get there.

The importance of species traits, environmental characteristics
and geographical location for community composition implies that
statistical analyses of community composition should be capable of
incorporating all of these types of factors. For any statistical anal-
ysis, a model specifies variables that might explain the presence or
abundance of species (predictor or independent variables) and the
statistical structure of the unexplained variation. Even though spe-
cies traits may ultimately dictate whether a species can occur in a
specific community, it is unlikely that all relevant traits are known
and measured for every species. Consequently, the effects of
these traits will be treated as ‘unexplained variance’ in the model.
Nonetheless, because phylogenetically related species often have
similar trait values, the unexplained variance will likely have phyloge-
netic signal (Blomberg, Garland Jr., & lves, 2003; Felsenstein, 1985;
Freckleton, Harvey, & Pagel, 2002). Therefore, statistical mod-
els of community composition should account for phylogenies
(Cavender-Bares, Ackerly, Baum, & Bazzaz, 2004; Frishkoff, Valpine,
& M’Gonigle, 2017; Helmus, Savage, Diebel, Maxted, & Ives, 2007
Li, Ives, & Waller, 2017; Losos, 1996; Webb, 2000; Webb, Ackerly,
McPeek, & Donoghue, 2002). Similarly, environmental factors differ-
ing among locations that are unknown or unmeasured might none-
theless be more similar among locations that are close to each other.
This will generate spatial autocorrelation in the unexplained variance
among communities (Cressie, 1991; Ives & Zhu, 2006). Spatial au-
tocorrelation can also be generated by the dispersal of individuals
among nearby communities (Moran, 1953; Royama, 1992). Thus, the
analysis of community composition requires statistical models that
can explicitly include species traits and environmental factors, and

also include them implicitly in the form of phylogenetic relationships
among species and geographical distances among locations in the
unexplained variance terms of the model.

Statistical models for phylogenetic community composition pro-
vide flexible tools for exploring the many possible factors underlying
the distribution of species and the composition of communities (lves
& Helmus, 2011; Ovaskainen & Soininen, 2011; Warton et al., 2015).
The models can describe complex relationships in the data, such
as how phylogenetically related species might respond similarly to
the same environmental gradient, or how phylogenetically related
species might exclude each other from the same communities. They
also give a firm statistical basis to test these patterns, the ability to
simulate datasets from the fitted model and the ability to predict the
composition of unsurveyed communities.

Analysing the composition of communities in a phylogenetic con-
text may generate additional statistical questions about the evolu-
tionary processes that have generated the distribution of values of
traits among species. For example, two insect species that occur in
the same lake might share both long-range flight abilities and toler-
ance to low pH. Is the positive correlation between these two traits
caused by correlated selective forces? A challenge to answering
this type of question is that phylogenetic correlations between trait
values might reflect species phylogenetic relatedness rather than
shared selection: two species might have both long-range flight abil-
ities and tolerance to low pH only because they are phylogenetically
closely related. To distinguish between these two explanations—
convergence of suites of traits due to shared selective forces versus
similarity due to phylogenetic relatedness—it is necessary to account
for phylogenies when performing correlation analyses between
traits that could explain similarities in the distributions of species.

The r package phyr is designed to allow users to easily develop
a rich collection of models for the analyses of ecological commu-
nities that include phylogenetic correlations among species and/or
spatial correlation among locations. Below, we first give a brief over-
view of the structure and syntax of two key functions pglmm() and
cor_phylo(). pglmm() allows the formulation of a diverse set of phy-
logenetic generalized linear models (PGLMM) that can be used not
only to analyse phylogenetic community composition but also com-
parative models for Gaussian and non-Gaussian data. cor_phylo()
computes the Pearson correlations among species traits while esti-
mating the strength of phylogenetic signal within each trait. We then
compare pglmm() and cor_phylo() to methods and programmes that
are currently available. Finally, we apply pglmm() and cor_phylo() to

simulated data to illustrate their implementation and output.

2 | OVERVIEW OF phyr

phyr contains three groups of functions (Table 1): phylogenetic
GLMMs (pglmm()), phylogenetic comparative methods (cor_phylo()
and pglmm_compare()), and community phylogenetic diversity met-
rics (e.g. psv(), pse()). The workhorse functions of all groups are writ-
ten in C++ to increase computational speed. Here, we will focus on
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TABLE 1 List of main functions in the
phyr package

Group Main functions

Brief description

Mixed models

Comparative
methods

Metrics

pglmm()

cor_phylo()

pglmm_compare()

psv(); pse(); psr();
psc(); psd()

ped()

vev2()

Phylogenetic GLMM for ecological community data
(e.g. species composition across sites; bipartite
interactions)

Correlations among multiple traits with
phylogenetic signal

pglmm() tailored for comparative data in which
species (tips of a phylogeny) only occur once

Phylogenetic alpha diversity of communities

Pairwise phylogenetic beta diversity of communities

Convert a phylogeny to a covariance matrix, a faster

the first two groups of functions (especially pglmm() and cor_phylo())
because they are more complicated and less readily available to
practitioners than community phylogenetic diversity metrics.

2.1 | pglmm()

Function pglmm() constructs and fits GLMMs that incorporate co-
variance matrices containing the phylogenetic relationships among
species. The syntax for pglmm() resembles that used in the r package
Ime4 (Bates, Machler, Bolker, & Walker, 2015), and indeed pglmm()
will fit most of the models that can be fit with Imer() and glmer().
pglmm() goes beyond Imer() and glmer() by allowing the specifica-
tion of covariance matrices, which could be phylogenetic covariance
matrices or any other covariance matrices that the user defines (e.g.
spatial or temporal autocorrelation matrix). pglmm() can also fit mod-
els with ‘nested’ covariance structures (e.g. a species phylogenetic
covariance matrix nested within a site covariance matrix). pglmm()
can operate in both frequentist mode, with the distribution of spe-
cies among communities being Gaussian, binary, binomial or Poisson,
and Bayesian mode with the addition of zero-inflated binomial and
Poisson distributions. Finally, it is our hope that the formula syntax
of pglmm() can be used to fit similar models with other programs
such as Stan (e.g. via r package brms Burkner, 2018).

A general example of the syntax for pglmm() is

pglmm(

Y ~ trait *env +
(1]sp_)+
(1]site_) +
(trait | site) +
(env|sp_)+
(1] sp_@site),

data = data,

cov_ranef = list(sp = phy.sp, site = V.space),

family = 'binomial’,

bayes = FALSE,

REML = TRUE

version of ape::vcv()

Here, Y is a binary (Bernoulli) dependent variable which takes val-
ues of either 0 or 1. The specification family = 'binomial' allows
binary data and also binomial data for which Y is a matrix con-
taining columns for successes and failures. The independent vari-
ables trait and env take on different values for each species and
site, respectively. Sites (site) and species (sp) are treated as ran-
dom effects: (1|site) implies that a value from a Gaussian random
variable is picked for each site, thereby representing unmeasured
differences among sites. For the case of species, the double un-
derscore in (1|sp__) implies that, in addition to a random effect for
species, there is a second random effect which contains the phy-
logenetic relationships among species (or some other correlation
structure specified by the user). The phylogenetic random effect
assumes that values for each species are picked from a multivar-
iate Gaussian distribution with phylogenetic covariance matrix ),
. A covariance matrix Y is specified by cov_ranef = list(sp = phy.
sp, site = V.space). The covariance matrix phy.sp associated with
species can be a phylo object from the r package ape (Paradis &
Schliep, 2018). To construct Y from a ‘phylo’ object, pglmm() as-
sumes that the residual variation associated with species follows
a Brownian motion model of evolution so that the covariance be-
tween species is proportional to their shared evolutionary history
(e.g. shared branch length on a phylogeny). It is also possible to
specify an explicit covariance matrix, such as site = V.space, where
V.space is a covariance matrix created from the distance between
sites. For example, if we assume that spatial correlations follow a
Gaussian function, then the correlation in residuals from sites i and
j located a distance d,.j from each other is exp(—(dij/r)z), where r is
the ‘range’ giving how quickly spatial correlation decreases with
distance (Besag & Moran, 1975).

The syntax (1|sp__) or (1|site__) generates two random effects,
one without and one with phylogenetic or spatial covariances; in
contrast, (1|sp) would generate only a single random effect that is in-
dependent among species. pglmm() forces in a term for (1|sp) when-
ever (1|sp__) is specified, because otherwise any difference among
species would be captured by the diagonal elements in ) even in
the absence of covariances among phylogenetically related species
which are specified by the off-diagonal elements of Y. Therefore,
if (1|sp) were not included, this could lead to the identification of
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phylogenetic signal in the abundances of species even in its absence
from a community. To account for differences among sites in how
they select for species with different traits, (trait|site) allows the
slope of Y against trait to be a Gaussian random variable. Similarly,
to account for the differences among species for how they respond
to env, (env|sp__) allows the relationship of Y against env to be given
by two slopes, the first slope that is picked from a Gaussian ran-
dom variable in which species are independent and the second slope
that is picked from a multivariate Gaussian with covariance matrix
Y. Finally, (1|sp__@site) generates a nested term: within a site, the
residual variation in Y shows phylogenetic relatedness, with phy-
logenetically related species more likely to occur in the same site.
Note that (1|sp__) differs from (1|sp__@site) because (1|sp__) gener-
ates differences in the mean value of Y for species across all sites,
whereas (1|sp__@site) is local to sites, giving the covariances among
species only within sites. This nested term can be used to test for
community clustering or overdispersion (Ilves & Helmus, 2011; Webb
et al., 2002). Other forms of a nested term are available in pglmm(),
which can be used to study more complicated questions such as bi-
partite networks.

With bayes = FALSE, pglmm() is fitted using a frequentist ap-
proach. ML or REML is used for fitting, with REML = TRUE as the
default. For a non-Gaussian model (e.g. family = 'binomial'), an iter-
ated quasi-likelihood method is used for model fitting which gives
the approximate likelihood; p values for the fixed effects are given
by a Wald test and for the random effects by profile likelihood, al-
though we recommend bootstrap-based tests when computation-
ally feasible. Note that REML = TRUE is an option for non-Gaussian
models (in contrast to glmer()) due to the algorithm used. With
bayes = TRUE, a Bayesian approach is implemented using INLA
(Rue, Martino, & Chopin, 2009), which gives parameter estimates
and credible intervals. For large problems with the number of spe-
cies-site combinations exceeding 2,000, the Bayesian computations
are considerably faster than the frequentist computations. Finally,

T T T T T
100 200 300 400 500

a key to interpreting the results from a model is understanding the
structure of the covariance matrices associated with the random ef-
fects. Therefore, pglmm() has associated plotting functions pglmm_
plot_ranef() that present the design matrices for the random effects
(Figure 1).

Whereas pglmm() is designed to accept community composition
data, in which the same species can occur in multiple sites, the al-
gorithm used by pglmm() can equally be used for comparative data
in which each species is represented by only a single data point.
pglmm_compare() is a wrapper for pglmm() that is tailored for com-
parative data and thus provides an easy-to-use function for analys-
ing non-Gaussian phylogenetic data.

2.2 | cor_phylo()

cor_phylo() makes it possible to compare suites of traits among spe-
cies, accounting for their phylogenetic relatedness (Johnson, lves,
Ahern, & Salminen, 2014; Zheng et al., 2009). To identify suites of
traits under joint selection, such as traits that together make up adap-
tive syndromes, it is necessary to perform a correlation analysis in
which phylogenetic relatedness is factored out. cor_phylo() does
this. It can also include within-species variation (e.g. measurement
error) which should better-expose the underlying correlations in
traits among species. Whereas pglmm() can be used to identify the
composition of communities within a region, cor_phylo() can be used
to assess patterns of traits among species that make up the regional
species pool.
The syntax for cor_phylo() is

cor_phylo(
variates = ~ traitl + trait2,
species = ~ sp,
phy = phy.sp,
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covariates = list(traitl ~ env),

meas_errors = list(traitl ~ mel, trait2 ~ me2),
data = data,

boot = 2000

In this example, the correlation between traitl and trait2 is com-
puted, and the column named sp in data identifies the species.
The object phy.sp specifies the phylogenetic covariance matrix as
a ‘phylo’ object from the ape package. cor_phylo() estimates the
phylogenetic signal for each trait by assuming that trait evolution
is given by a Ornstein-Uhlenbeck process. The term covariates =
list(traitl ~ env) includes the independent variable env for trait1, to
remove possible confounding effects; only an intercept is estimated
if no covariate is provided for a trait. Covariates are linear terms
fit using the generalized least squares estimation equation (Martins
& Hansen, 1997). Within-species variation is specified by meas_er-
rors = list(traitl ~ mel, trait2 ~ me2), where mel and me2 are the
standard errors for traitl and trait2, respectively, of values at the
tips of the phylogenetic tree. If within-species standard errors are
not provided for a given trait, the trait values are assumed to be
known without error. Finally, cor_phylo() can perform parametric
bootstrapping to give confidence intervals for all parameter esti-
mates: correlations, phylogenetic signals, covariate coefficients and

coefficient covariances.

3 | RELATIONSHIPS TO OTHER METHODS
AND SOFTWARE

Earlier versions of pglmm() and cor_phylo() both appear in existing r
packages (pez (Pearse et al., 2015) and ape (Paradis & Schliep, 2018),
respectively), although the versions in phyr represent considerable im-
provements in ease-of-use, computational speed and flexibility. Both
have new syntax that makes them more intuitive to use. pglmm() also
has new associated functions that plot the design of the covariance
matrices (Figure 1), making model interpretation easier. Both are now
coded in C++ (for key functions), which speeds computation time by
5-10x. pglmm() now supports several non-Gaussian distributions and
allows Bayesian analyses using INLA (Rue et al., 2009) that is particu-
larly useful for large datasets. Finally, both include more output; for
example, both now report the log-likelihood and related measures AIC
and BIC. The log-likelihood makes it possible to compare full models to
reduced models with some parameters removed, using likelihood ratio
test (e.g. Neter, Wasserman, & Kutner, 1989) to give the significance of
a collection of parameters. AIC and BIC can be used for model selec-
tion (Burnham & Anderson, 2002).

3.1 | pglmm()

pglmm() is syntactically modelled after Imer() and glmer() in
Ime4 (Bates et al., 2015), although it allows the specification of

phylogenetic covariance matrices. pglmm() also allows ‘nested’
models (with block-diagonal covariance matrices) which arise when
phylogenetic covariances only act within single communities, rather
than among communities; an example is illustrated by the (1|sp__@
site) term in Figure 1. Such nested models make it possible to as-
sess whether phylogenetic relatedness affects the abundance of
species within the same communities, such as whether competition
between closely related species excludes one of the competitors
from communities where the other is present. This is the case in the
distribution of fish among lakes: after accounting for the effect of pH
excluding some species from some lakes, a pattern of exclusion oc-
curs in which phylogenetically related species are less likely to occur
in the same lakes (Helmus et al., 2010). Nested models are structur-
ally incompatible with the architecture of Ime4.

There are alternative programs to pglmm(), although they have
limitations that pglmm() overcomes. Hadfield, Krasnov, Poulin, and
Nakagawa (2013) use the r package MCMCglmm (Hadfield, 2010)
to perform phylogenetic community analyses, although they also
use ASReml because its penalized quasi-likelihood (PQL) approach
is computationally much faster. Hierarchical Modelling of Species
Communities (HMSC-R) (Tikhonov et al., 2019) performs community
analyses using Bayesian MCMC approaches, although it does not in-
clude nested terms. It is also possible to code specific phylogenetic
community models using flexible Bayesian platforms such as WinBugs,
Stan and JAGS, although this will involve considerable programming

and expertise.

3.2 | PGLMM asaJSDM

Joint Species Distribution Models (JSDMs) are models where the
response variable is distribution (abundances or occurrences) of
multiple species across sites or samples, where all species are
modelled jointly, usually by allowing non-zero covariance between
either species-level errors, species-level coefficients in the model
or both (Warton et al., 2015). pglmm() in phyr is a joint species
distribution model where the (residual) dependencies among spe-
cies are modelled in a way that incorporates phylogenetic related-
ness. JSDMs, and Species Distribution Models (SDM) in general,
have typically been focused on producing accurate predictions
of how species are distributed, usually in a geographic context.
However, they can also be used for making inferences about the
biology of species, such as which environmental factors are im-
portant in explaining the distribution of a species or set of spe-
cies, and whether traits or evolutionary history can help explain
these distributions. It is this kind of inference that is the focus of
the JSDM implemented in pglmm(). There is often a trade-off be-
tween improving predictions and making solid inferences because
increasing the complexity or flexibility of a model can improve its
predictive power, but this same complexity makes it more diffi-
cult to understand what biology is being represented by the model
outputs. By incorporating phylogenetic information, pglmm() has
two uses. First, by identifying correlations that might be expected
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among species due to phylogeny, pglmm() gives better statistical
properties for tests of factors underlying community composi-
tion. For example, Li and lves (2017) show that failure to account
for phylogenetic correlations can inflate type | errors in tests for
associating environmental variables and traits that underlie com-
munity composition. Second, pglmm() allows explicit focus on the
importance of evolutionary history in structuring species assem-
blages, since phylogenetic covariances are explicitly estimated.
This is in contrast to many other JSDMs (e.g. those in described in
Wilkinson, Golding, Guillera-Arroita, Tingley, & McCarthy, 2019),
which attempt to estimate all pairwise species covariances with-
out accounting for phylogeny.

Of course, the goals of solid inference and prediction are not
mutually exclusive. Good prediction requires avoiding overfitting,
which can be facilitated by reducing the number of parameters in
the model. In some systems, it may be possible to make better pre-
dictions using a simple phylogenetic model if phylogeny is a strong
predictor of species covariance, or if many species are poorly sam-
pled, and thus estimating covariances between them individually re-
sults in higher prediction variance. Using phylogeny can help closely
related species share statistical strength through phylogenetic par-
tial pooling. Ultimately, it can be powerful to use the same kind of
statistical framework to do both predictive and inferential work in
ecology because it allows ecologists to smoothly move between
these two goals and more easily and quickly draw mutual insights

between them.

3.3 | cor_phylol)

The r package mvMORPH (Clavel, Escarguel, & Merceron, 2015) can
fit a broad range of models, of which cor_phylo() can be formulated
as a special case. While cor_phylo() does not have the flexibility of
mvMORPH, it is correspondingly simpler to use. Also, cor_phylo()
has built-in bootstrapping capabilities that are necessary to give
confidence in the parameter estimates and p values. The function
evolvev.lite() in the r package phytools (Revell, 2012) will compute
phylogenetic correlations, and changes in phylogenetic correlations
through time (see also Caetano & Harmon, 2018), although the
phylogenetic covariance matrix is derived under the assumption of
Brownian motion evolution. This contrasts cor_phylo() in which the
strength of phylogenetic signal is computed at the same time as the
correlation. It is also possible to code the cor_phylo() model using
platforms such as WinBugs, Stan and JAGS; but again, this will re-

quire considerable programming and expertise.

4 | EXAMPLE USAGE

We simulated datasets to demonstrate how to use pglmm() and
cor_phylo(). Details about simulations of PGLMM are found in the
Appendix. Our goal in this section is to provide some general ideas
about the inputs and outputs of these two functions instead of

testing their statistical performances or interpreting the ecological
meanings of model results. For those purposes, please see the pack-

age vignettes and Ives (2018).

4.1 | pglmm()

We fitted a PGLMM that examined how a hypothetical functional
trait, environmental gradient and their interaction affect distributions
of 30 species across 20 sites. We focused on abundance and used the
default family of data distribution (Gaussian), but other distributions
can also be specified by resetting the family argument. Phylogenetic
relationships among species and site spatial autocorrelations are spec-
ified by cov_ranef = list(sp = phy, site = V.space) where sp and site are
group variables of random terms, phy can be a phylogeny with class
phylo or a phylogenetic covariance matrix, and V.space is a covari-
ance matrix among sites. This model can also be fitted with a Bayesian
framework by setting bayes = TRUE, which is recommended when the
dataset is large.

z <- pglmm(
abund ~ 1 + env + trait + env:trait +
(1 1sp_)+(1]site_) +
(env | sp) + (1| sp_@site),
data = dat,
cov_ranef = list(sp = phy, site = V.space)
)
summary(z)
## Linear mixed model fit by restricted maximum likelihood
#it
## Call:abund ~ 1 + env + trait + env:trait
#i#
## loglLik AIC BIC
##-1159 2339 2375

#it

## Random effects:

## Variance Std.Dev

## 1|sp 1.48e-06 0.00122

## 1sp__ 1.28e+00  1.13259

#i# 1|site 2.72e-06 0.00165

#i# 1|site__ 7.18e-01 0.84725

## env|sp 9.72e-01 0.98612

## 1|sp_@site 9.68e-01 0.98395

## residual 9.88e-01 0.99401

##

## Fixed effects:

## Value  Std.Error Zscore Pvalue

## (Intercept) 1.236 1.438 0.86 0.3903

## env 0.892 0.300 2.97 0.0029 **
#4# trait 0.802 0.199 4.03 5.6e-05 ***
## env:trait 1.096 0.195 5.63 1.8e-08 ***
#it ---

## Signif. codes: 0 "***' 0.001 **'0.01'' 0.05"'0.1"''1
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The summary of model results includes the model fitting method
(maximum likelihood or Bayesian), the model formula, log likelihood
and other related statistics (AIC, BIC and DIC), estimates of variances
of random terms, coefficients of fixed terms and their uncertainties.
These results show that pglmm() correctly recovered that the hy-
pothetic functional trait interacted with environmental variable to
affect species composition.

4.2 | cor_phylo()

Here, we simulated two hypothetical functional traits (trait_1
and trait_2) for 50 species. We set the true correlation between
these two traits to be 0.7 and their phylogenetic signals (via an
Ornstein-Uhlenbeck process) to be 0.3 and 0.95, respectively.
We also set their measurement errors to be 0.2 and 1, respec-
tively, and assigned the covariate cov_trait_2 to trait_2 with a
slope of 1.

z2 <- cor_phylo(variates = ~ trait_1 + trait_2,
covariates = list(trait_2 ~ cov_trait_2),
species = ~ sp, phy = phy,
meas_errors = list(trait_1 ~ se_trait_1, trait_2 ~
se_trait_2),
data = traits)
z2

#i#

## Call to cor_phylo:

## cor_phylo(variates = ~trait_1 + trait_2, species = ~sp, phy = phy,
covariates = list(trait_2 ~ cov_trait_2), meas_errors = list(trait_1
~se_trait_1, trait_2 ~ se_trait_2), data = traits)

#i#

## loglLik AIC BIC

##-39.8 95.6 101.8

##

## Correlation matrix:

## trait_1 trait_2

##trait_1 1.000 0.792

## trait_2 0.792 1.000

#i#

## Phylogenetic signal (OU process):

## d

## trait_1 0.484

## trait_2 0.989

#it

## Coefficients:

## Estimate SE Z-score P-value
## trait_1_0 0.1426 0.2420 0.59 0.56
## trait_2_0 -0.3231 1.8840 -0.17 0.86
## trait_2_cov_trait_2 0.9941 0.0179 55.55 <2e-16 ***
#it ---

## Signif. codes: 0 ***' 0.001 **' 0.01 "' 0.05''0.1'"1

The output of cor_phylo() includes log-likelihood values, AIC, BIC,
estimated correlation matrix of traits, estimated phylogenetic signals
of traits, estimated coefficients and their uncertainties (SEs, Z scores
and p values). In this example, the model gave good estimates of the
parameters used to simulate the data. If bootstrapping was enabled
by setting the boot argument, the lower and upper boundaries of cor-
relations, phylogenetic signal values and coefficients will be appended.

5 | CLOSING REMARKS

In recent years, there has been an increasing effort to apply model-
based approaches in community ecology. Despite the well-known
importance of phylogenetic relationships in structuring species dis-
tributions and community composition, relatively few studies have
incorporated phylogenetic relationships in model-based analyses
of species distributions and community ecology. A potential reason
is the lack of easy-to-use tools to facilitate the use of phylogenetic
species-distribution modelling in ecological communities. The pack-
age phyr fills this gap by providing implementations of phylogenetic
species-distribution models with flexible model formula syntax
(pglmm()). It also includes other model-based functions that are
useful for ecological studies such as estimating correlations among
functional traits while accounting for their evolutionary history (cor_
phylo()) and calculating community phylogenetic diversity (e.g. psv())
(Table 1).

The model formula of pglmm() is general and can be applied
using other tools to fit phylogenetic species-distribution models.
Thus, pglmm() can serve the developer community as a shell for
new methods that fit GLMMs, with phyr providing an easy user in-
terface. Using INLA as a backend to fit a Bayesian version of the
PGLMM model is an example of this approach. To facilitate this end,
we are developing phyr openly on github and actively encourage
community contribution. We hope that the phyr package will help
current and future researchers formulate and analyse phylogenetic
species-distribution models.
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