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Summary

� Phylogenetic and functional trait-based analyses inform our understanding of community

composition, yet methods for quantifying the overlap in information derived from functional

traits and phylogenies remain underdeveloped. Does adding traits to analyses of community

composition reduce the phylogenetic signal in the residual variation? If not, then measured

functional traits alone may be insufficient to explain community assembly.
� We propose a general statistical framework to quantify the proportion of phylogenetic pat-

tern in community composition that remains after including measured functional traits. We

then illustrate the framework with applications to two empirical data sets.
� Both data sets showed strong phylogenetic attraction, with related species likely to co-occur

in the same communities. In one data set, including traits eliminated all phylogenetic signals in

the residual variation of both abundance and presence/absence patterns. In the second data

set, including traits reduced phylogenetic signal in residuals by 25% and 98% for abundance

and presence/absence data, respectively.
� Our framework provides an explicit way to estimate how much phylogenetic community

pattern remains in the residual variation after including measured functional traits. Knowing

that functional traits account for most of the phylogenetic pattern should provide confidence

that important traits for phylogenetic community structure have been identified. Conversely,

knowing that there is unexplained residual phylogenetic information should spur the search

for additional functional traits or other processes underlying community assembly.

Introduction

Functional traits, arising as innovations through evolution, cap-
ture essential aspects of species’ morphology, ecophysiology, and
life-history strategy (McGill et al., 2006; Violle et al., 2007).
Although closely related species can differ greatly in some func-
tional traits as a result of rapid evolution or ecological conver-
gence (Losos, 2008, 2011), many functional traits are conserved
enough to show strong phylogenetic signal (Freckleton et al.,
2002; Webb et al., 2002; Moles et al., 2005; Donoghue, 2008).
Functional traits, with or without phylogenetic signal, affect how
environmental conditions filter species into communities and
how species compete, mechanistically linking fundamental eco-
logical processes to community structure (McGill et al., 2006;
Violle et al., 2007; Adler et al., 2013). Functional traits also
provide a common currency that facilitates comparisons among
species and across regions, allowing us to assess the generality of
patterns and predictions in community ecology (McGill et al.,
2006). This has led to a proliferation of studies using functional
traits to understand community composition. Functional trait-
based approaches, however, are limited by the fact that it is

impossible to measure all potentially important functional traits
that affect the distribution of species.

Phylogenies play an important role in community ecology by
providing information about evolutionary relationships among
species (Graves & Gotelli, 1993; Losos, 1996; Cavender-Bares
et al., 2006; Baum & Smith, 2012). Because phylogenetically
related species often have similar functional trait values, we
expect phylogenetically related species to co-occur more often in
the same communities, reflecting their shared environmental tol-
erances. Conversely, if the similar traits that phylogenetically
related species have cause them to compete strongly, then closely
related species may be less likely to co-occur. These and other
processes relating functional traits to community composition
often lead to phylogenetic signatures in how species are
distributed among communities (Webb et al., 2002).

We expect the information provided by functional traits and
the information provided by phylogenetic analyses to overlap
(Vane-Wright et al., 1991; Cavender-Bares et al., 2004; Cadotte
et al., 2009; Ives & Helmus, 2011). We can test this expectation
by incorporating functional trait information into analyses of
community composition and asking whether there are residual
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phylogenetic patterns that remain unaccounted for by the func-
tional traits. If so, this would suggest one of two things. First,
there may be additional functional traits that have not been mea-
sured and incorporated into the analysis. Second, there may be
phylogenetically correlated factors aside from functional traits
that affect community structure; for example, phylogenetic pat-
terns could be generated if there is immigration from another
region that contains phylogenetically related species, or if stochas-
tic processes leave a phylogenetic signature (Ricklefs & Schluter,
1993; Hubbell, 2001; Leibold et al., 2010). Thus, when residual
phylogenetic patterns remain in analyses that incorporate func-
tional trait information, we have evidence that there are addi-
tional factors affecting community assembly.

Here, we present a general three-step statistical framework to
test for residual phylogenetic signal in community composition
that remains unaccounted for after the inclusion of measured
functional traits (Fig. 1). The first step is to test for phylogenetic
pattern, either ‘phylogenetic attraction’ (phylogenetically related
species more likely to occur in the same communities) or ‘phylo-
genetic repulsion’, using a generalized mixed model (Bolker et al.,
2009) that incorporates phylogenetic correlations in the distribu-
tions of species (Ives & Helmus, 2011). If there is phylogenetic
pattern, then it could be produced by measured functional traits
that themselves have phylogenetic signal (Fig. 1a, arrows 2, 4,
and 7), unmeasured functional traits with phylogenetic signal
(Fig. 1a, arrows 2, 5, and 8), or phylogenetic processes unrelated
to functional traits (Fig. 1a, arrow 6). The second step first adds
measured functional traits to the model, testing to see if they help
to explain the distribution of species among communities. After
incorporating these explanatory traits, we then ask whether phy-
logenetic signal remains in the residual variation in community
composition (Fig. 1b). If there is residual phylogenetic pattern,
we continue to add traits to see if these account for this signal.
Thus, the second step investigates the extent to which we can
account for the phylogenetic pattern in community composition
using the measured functional traits. If phylogenetic patterns

remain even after incorporating all selected measured traits, we
can then apply a third step. This uses environmental data to test
whether phylogenetically related species respond similarly to
environmental gradients across communities. Such parallel
species’ responses to environmental gradients allow us to indi-
rectly identify possible unmeasured functional traits that could
play a role in community assembly (Fig. 1a, arrow 8, unmeasured
traits with phylogenetic signal). In cases where phylogenetically
related species respond similarly to an environmental gradient,
species presumably share traits that confer similar tolerances to,
or preferences for, specific environmental conditions. Although
these three steps employ existing statistical methodology, the
specific models have not previously been incorporated into a gen-
eral framework to investigate the overlap between information
provided by functional traits and phylogenies. To illustrate this
framework and explore its utility, we analyse two community
data sets rich in information on traits, phylogenetic relationships,
and environmental variables.

Other studies have simultaneously investigated both trait-
based and phylogenetic patterns in community composition (e.g.
Cavender-Bares et al., 2006; Swenson & Enquist, 2009). As
many functional traits can affect community composition, it is
important to analyse several traits when testing whether residual
phylogenetic patterns exist after incorporating traits. Previous
studies investigating multiple functional traits generally use one
metric to measure multidimensional differences between pairs of
species in functional trait-space and a second metric to measure
phylogenetic differences between pairs of species. They then
compare the explanatory power of these two metrics. Recently,
Cadotte et al. (2013) created a synthetic metric that combines
trait and phylogenetic distances by varying a weighting parame-
ter. This allowed them to analyse differences between communi-
ties using models that varied this metric to span the gradient
from traits alone to phylogeny alone. Our approach differs from
these metric-based approaches in several ways. First, rather than
reducing information on traits to a one-dimensional gradient of

(a) (b)

Fig. 1 Diagram of the conceptual framework of the study. (a) Some traits have phylogenetic signal that reflects phylogenetic history (arrows 2, 4 and 5)
while other traits do not (arrows 1 and 3), possibly because these traits evolve rapidly or experience convergent evolution. Phylogenetic patterns in
community composition can be generated by measured and unmeasured traits with phylogenetic signal (arrows 7 and 8), and by other phylogenetic
processes such as biogeographical patterns in species distributions (arrow 6). The question we address is how much of the phylogenetic signal in
community composition can be explained by measured functional traits, and whether there is residual phylogenetic signal that could have been generated
by unmeasured traits or other phylogenetic processes. (b) Traits and phylogeny contain overlapping information about how communities are assembled.
We estimate the proportion of this overlapping information by calculating the changes in the strength of community phylogenetic patterns without
(r2

phy�full) and with (r2
phy�reduced) measured functional traits in the models.
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differences among species, our modelling approach retains speci-
fic values for all traits for each species. This is consistent with typ-
ical phylogenetic analyses (Felsenstein, 1985; Harvey & Pagel,
1991; Garland et al., 2005) that treat species’ traits as indepen-
dent variables (the ‘mean’ part of the model), while phylogenetic
patterns are assessed as covariances in the residuals (the ‘variance’
part of the model). Second, because our model-based approach
retains more information than metric-based approaches, it is
expected to have greater statistical power (Ives & Helmus, 2011).
Third, although metric-based approaches can effectively identify
trait-based and phylogenetic patterns in specific communities,
they do not provide any overall test for overlap between informa-
tion derived from measured functional traits and phylogenies.
Providing such a test is the focus of our analyses. If measured
traits together reduce all phylogenetic signal in the residual varia-
tion in species distribution patterns, we can conclude that these
traits (or other traits that are strongly correlated) account for phy-
logenetic patterns in community composition. Conversely, if
measured traits do not reduce most of the residual phylogenetic
patterns, then we can infer that either additional traits or addi-
tional biogeographical processes need to be investigated.

Materials and Methods

We apply our three-step statistical framework to both species
abundance and presence/absence (incidence) data drawn from
two illustrative empirical studies. In the main text we present
results for abundance data because abundance data typically
provide more information about community assembly (Freilich
& Connolly, 2015). In the Supporting Information we present
parallel results for the presence/absence data.

Phylogenetic community composition

Our first step tests for phylogenetic community structure in
species abundances without including environmental or func-
tional trait information by applying a phylogenetic linear mixed
model (PLMM). To build the PLMM, let n be the number of
species distributed among m sites. Letting Y be the mn9 1 vector
containing the abundance of species j (j = 1, . . ., n) at site s
(s = 1, . . ., m), the PLMM is:

logðYi þ 1Þ ¼ aþ aspp½i� þ bspp½i� þ ci þ dsite½i� þ ei

a�Gaussianð0;r2
a InÞ

b�Gaussianð0;r2
bRsppÞ

c �Gaussianð0; kronðIm;r2
cRnestedÞÞ

d �Gaussianð0;r2
dImÞ

e �Gaussianð0;r2
e ImnÞ

Eqn 1

Here we use the convention of multilevel models, with fixed
and random effects given by Greek and Latin letters, respectively
(Gelman & Hill, 2007). The function spp[i] maps the observa-
tion i in vector Y to the identity of the species, so i takes values
from 1 to mn (Gelman & Hill, 2007, 251–252). The intercept a

estimates the overall average log abundance of species across all
sites. The following three random variables aspp[i], bspp[i] and ci
incorporate variation in abundance among plant species. Specifi-
cally, aspp[i] gives differences among species in mean log abun-
dance across all sites, with differences among the n species
assumed to be drawn independently from a Gaussian distribution
with mean 0 and variance r2

a . bspp[i] also gives differences in
mean log abundance among species across sites, but differences
among species are assumed to be drawn from a multivariate
Gaussian distribution with covariance matrix r2

bƩspp, where the
n9 n matrix Ʃspp is derived from the phylogeny, and the scalar
r2
b dictates the overall strength of the phylogenetic signal (see

next paragraph). Thus, aspp[i] and bspp[i] together capture varia-
tion in mean species log abundances that is either unrelated to
phylogeny or has phylogenetic signal. The random variable ci
accounts for covariance in the log abundances of plant species
nested within sites (using the Kronecker product, kron). Specifi-
cally, ci assesses whether phylogenetically related plant species are
more or less likely to co-occur at the same sites. Hence, ci mea-
sures the overall strength of phylogenetic attraction or repulsion,
and it is the key term we are interested in. Random effect dsite[i]
accounts for site-specific variation in the mean log abundances of
all species among the m sites, with these m values assumed to be
distributed by a Gaussian distribution with variance r2

d. Finally,
ei captures the residual variance r2

e .
We derive the phylogenetic covariance matrix Ʃspp from the

assumption of Brownian motion evolution. If a continuous-
valued trait evolves up a phylogenetic tree with a constant proba-
bility of slight increases or decreases, the covariance in trait values
between two species will be proportional to the length of shared
evolution given by the distance on the phylogenetic tree between
the root and the species’ most recent common ancestor (Martins
& Hansen, 1997). This gives a direct way to convert the phy-
logeny into a hypothesis about the covariance matrix. For the
mean abundances of species among sites given by aspp[i] + bspp[i],
the variance among species given by r2

a I + r2
bƩspp is equivalent

to the model of evolution proposed by Pagel (1999). For the
assessment of phylogenetic attraction within sites, ci, we use
Ʃnested = Ʃspp. For phylogenetic repulsion, we use the matrix
inverse of Ʃspp, Ʃnested = (Ʃspp)

�1. Theoretical justification for
Ʃnested = (Ʃspp)

�1 comes from a model of competition among
community members (Appendix A of Ives & Helmus, 2011).
Briefly, if the strength of competition between species is given by
Ʃspp, as expected if closely related species exploit similar
resources, then the relative abundances of species will have covari-
ance matrix (Ʃspp)

�1.
Eqn 1 is the same as model I in Ives & Helmus (2011) except

that model I includes variation among species in mean log abun-
dance across sites as fixed effects rather than two random effects,
aspp[i] and bspp[i]. This change allows us to align Eqn 1 with Eqn 2
(later) that includes variation in the relationship between trait
values and log abundance within sites as random effects. In our
analyses, treating variation among species in mean log abundance
as fixed effects led to almost identical estimates of phylogenetic
signal (estimates of r2

c ), and so our treatment of aspp[i] and bspp[i]
as random effects does not change our conclusions.
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Statistical significance of the variance terms r2 can be deter-
mined using a likelihood ratio test. Because the null hypothesis
r2 = 0 is on the boundary of the parameter space (r2 cannot be
negative), we use the 0.5 v20 + 0.5 v21 mixture distribution for sig-
nificance tests (Self & Liang, 1987). v20 represents a distribution
with a point mass at 0, so the P-values given by 0.5 v20 + 0.5 v21
are one-half the values that would be calculated from a standard
likelihood ratio test using v21. Simulations suggest that P-values
calculated in this way are more conservative (give higher P-values)
than those derived from a parametric bootstrap (Supporting
Information Notes S1).

Are there residual phylogenetic patterns after incorporating
functional traits?

After the detection of phylogenetic patterns, our second step asks
how much of the phylogenetic patterns identified in step 1
remains after including functional traits in the model. We
selected measured functional traits to be incorporated into the
model with two aims. First, we wanted to include functional
traits that are important in explaining species composition of
communities, fulfilling one of the most common goals of com-
munity ecology. Second, we wanted to include additional func-
tional traits that can further reduce phylogenetic patterns in the
residual variation, fulfilling the goal of this study.

We incorporated functional traits into a statistical model of
community composition using the model:

logðYi þ 1Þ ¼ aþ aspp½i� þ bspp½i� þ ci þ dsite½i�
þ ðbþ fsite½i�Þtspp½i� þ ei

a�Gaussianð0;r2
a InÞ

b�Gaussianð0;r2
bRsppÞ

c �Gaussianð0; kronðIm;r2
cRnestedÞÞ

d �Gaussianð0;r2
dImÞ

f �Gaussianð0;r2
f ImÞ

e �Gaussianð0;r2
e ImnÞ

Eqn 2

This model is the same as Eqn 1, except that it includes the values
of a single functional trait, tspp[i]. The fixed and random effects
terms (b + fsite[i])tspp[i] allow the effect of trait tspp[i] to vary among
sites, with the fixed term b giving the mean slope of the relationship
between log abundance and tspp[i] across all sites, and the random
term fsite[i] giving variation in this slope among sites. The proportion
of phylogenetic signal in species composition (estimated by r2

c )
reduced by the incorporation of trait tspp[i] is assessed by comparing
r2
c between models with and without this trait in the product fsite[i]

tspp[i]. To assess more than one functional trait, we built a multivari-
ate version of Eqn 2; each trait is incorporated in the same way by
replicating the terms (b + fsite[i])tspp[i].

To identify functional traits that are important in explaining
species composition of communities, we performed model selec-
tion using the Akaike information criterion (AIC). Because of the
large number of possible models, we used forward selection as
proposed by Jamil et al. (2012). We did not use backward

selection, because backward selection is often unfeasible because
of mathematical convergence problems if the full model has many
variables. To select traits that explain patterns of community
composition, we started with the model containing only species
and sites as random terms and excluding phylogenetic variances
(Eqn 1 without terms bspp[i] and ci). We then selected traits as
fixed terms btspp[i] (Eqn 2 without terms bspp[i] and ci). These
fixed terms represent the average responses across all sites; thus,
when a fixed term is included, it implies that, on average across all
sites, species may have high or low abundance depending on their
trait value. We then selected traits as random terms including also
their fixed terms (b + fsite[i])tspp[i]. The random terms represent
differences among sites in how species traits affect species abun-
dances. Thus, if fsite[i] is included, then some sites might have high
abundances of species with a given trait value, while other sites
would have low abundances of species with the same trait value.
We always included the fixed term for a trait when including it as
a random term, because we did not want to force the random
effects to have a mean of zero. After all traits that improved the fit
of the model (either as fixed terms or as fixed and random terms)
were selected, we selected and added the phylogenetic terms bspp[i]
and ci (Eqn 2). This process should give the lowest AIC phyloge-
netic model, which we checked by removing each of the random
and fixed effects while retaining the phylogenetic terms bspp[i] and
ci in the model. To ask whether the addition of more traits could
reduce the residual phylogenetic pattern (r2

c ) any further, regard-
less of whether this decreased the fit of the model (increased AIC),
we then added each remaining trait as fixed and random terms.
We tried all traits regardless of whether they were correlated with
each other, because our goal was to test the overall phylogenetic
pattern in the residual variation after including functional traits
rather than to separate the contribution of each functional trait.
For this purpose, multicollinearity does not interfere with the
assessment of phylogenetic signal in the residual variation.

The process outlined in the above paragraph will identify func-
tional traits that are important both in explaining species compo-
sition and in reducing phylogenetic signal in the residual
variation. To provide additional evidence that the traits identified
reduce phylogenetic signal in the residual variation, we analysed
each trait separately to test for two anticipated properties. The
first property is that the functional trait should itself show phylo-
genetic signal among species (i.e. related species have similar
functional trait values); otherwise, a trait could not produce (and
hence reduce in the model) phylogenetic signal in species’ abun-
dances. Therefore, we tested each continuous trait for phyloge-
netic signal among species using Pagel’s k (Pagel, 1999), and for
binary traits we used phylogenetic logistic regression (Ives & Gar-
land, 2010). We also tested for phylogenetic signal in continuous
and binary functional traits using Blomberg’s K (Blomberg et al.,
2003). We used Blomberg’s K in addition to model-based meth-
ods because K makes no specific assumption about the model
form of phylogenetic signal (e.g. whether phylogenetic signal
varies as a result of stabilizing selection vs accelerating rates of
evolution). As shown in the Results section, K identified some
traits as having phylogenetic signal that were not identified by
Pagel’s k or phylogenetic logistic regression. The second property
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is that there should be variation among sites in the relationship
between species trait values and abundances. If a trait has phylo-
genetic signal but there is no variation in relationships between
plant functional trait values and abundances among sites, then
the trait will contribute to the overall phylogenetic signal of
species abundance as captured by bspp[i] in Eqn 1, but it probably
will not affect phylogenetic patterns nested within sites captured
by ci. Therefore, we tested for variation among sites in the rela-
tionship between trait values and log abundances using the linear
mixed model (LMM):

logðYi þ 1Þ ¼ aþ aspp½i� þ ðbþ bsite½i�Þtspp½i� þ ei

a�Gaussianð0;r2
a InÞ

b�Gaussianð0;r2
bImÞ

e �Gaussianð0;r2
e ImnÞ

Eqn 3

where tspp[i] is the focal functional trait value of the species corre-
sponding to observation i, and r2

b gives the variation among sites
in the relationship between trait values and log abundances. This
formulation is closely related to the model used by Pollock et al.
(2012), although we included a main effect for traits. If r2

b > 0, we
concluded that different sites select species differently based on the
focal trait. We used a significance threshold of P < 0.1 here to
lower the risk of excluding potentially important functional traits.

Which environmental variables drive phylogenetic pattern?

Sometimes phylogenetic patterns in community composition are
observed, and there is still strong phylogenetic signal in the resid-
ual variation after including measured functional traits. In such
cases, how can we identify additional functional traits that might
further reduce residual phylogenetic pattern? Phylogenetically
related species are usually assumed to be ecologically similar as a
consequence of niche conservatism (Wiens et al., 2010). There-
fore, related species will tend to have similar responses to envi-
ronmental variables. If these environmental variables are strong
enough to drive phylogenetic patterns in community composi-
tion, then functional traits associated with tolerance or sensitivity
to these environmental variables will probably affect community
composition. We can therefore investigate phylogenetic patterns
in how species respond to environmental variables in order to
infer possible additional, unmeasured functional traits that might
help to explain patterns in community composition.

We tested for phylogenetic patterns in the responses of species
to environmental variables using the PLMM:

logðYi þ 1Þ ¼ aþ aspp½i� þ bspp½i� þ ðbþ gspp½i�
þ hspp[i]Þxsite½i� þ ei

a�Gaussianð0;r2
a InÞ

b�Gaussianð0;r2
bRsppÞ

g �Gaussianð0;r2
gInÞ

h�Gaussianð0;r2
hRsppÞ

e �Gaussianð0;r2
e ImnÞ

Eqn 4

Here, gspp[i] and hspp[i] represent nonphylogenetic and phylo-
genetic variation among species in their response to environmen-
tal variable x, respectively (see Model II in Ives & Helmus,
2011). The key parameter of interest is r2

h which we tested using
a likelihood ratio test. If r2

h > 0, phylogenetically related species
respond to environmental variable x in similar ways, suggesting
the existence of an unmeasured phylogenetically inherited trait
associated with species tolerances or sensitivities to x. Similar to
Eqn 2, multiple environmental variables can be included by
replicating the term (b + gspp[i] + hspp[i])xsite[i] for each additional
variable x.

Empirical examples

We applied our analytical framework to two empirical data sets
including trait, community, and environmental data. The first is
the Dune Meadows data from Jongman et al. (1995) and the sec-
ond is from the Wisconsin Pine Barrens (Li & Waller, 2015).
The Dune Meadows data set consists of 30 plant species in 20
sites. Five environmental variables were measured for each site:
thickness of the soil A1 horizon (A1), moisture content of the soil
(moisture), agriculture land use (use), amount of manure applied
(manure), and grassland management type (management). Five
functional traits for higher plants were obtained by Jamil et al.
(2013), including specific leaf area (SLA; m2 kg�1), plant height
(cm), leaf dry matter content (LDMC; %), seed mass (g per
seed), and life history (annual or perennial). We removed the two
moss species as they lack functional trait data, resulting in 28
species across the 20 sites.

The Pine Barrens data consist of 152 species distributed
among 30 Pine Barrens forest sites in the central Wisconsin sand
plains (Li & Waller, 2015). We measured 20 environmental vari-
ables at each site, including soil properties (17 variables), climatic
conditions (minimum temperature and precipitation), and
canopy cover. The vegetation data set and canopy cover have
been published in Li & Waller (2015). For the 55 focal species
that occurred in three or more of the 30 communities, we mea-
sured 11 continuous and four categorical functional traits on at
least 12 individuals (four from each of at least three populations)
using standard protocols (Perez-Harguindeguy et al., 2013).
Continuous traits include seed mass (g per seed), plant height
(cm), SLA (m2 kg�1), LDMC (%), leaf circularity (dimension-
less), leaf length (cm), leaf width (cm), leaf thickness (mm), leaf
carbon concentration (%), leaf nitrogen concentration (%), and
stem dry matter content (SDMC; %). We aggregated each cate-
gorical trait into two levels: growth form (woody vs nonwoody),
life cycle (annual vs nonannual), and pollination mode (biotic vs
abiotic). We divided seed dispersal mode into three binary vari-
ables (wind dispersed vs not, animal dispersed vs not, and unas-
sisted vs assisted dispersal).

For both data sets, the available functional traits cover the
leaf–height–seed (LHS) plant ecology strategy (Westoby, 1998)
and represent multidimensional functions of plants associated
with resource use, competitive ability, dispersal ability, and so
on. For analyses, we log-transformed highly skewed traits and
then Z-transformed all numerical trait values to have means of 0
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and standard deviations of 1, allowing coefficients in the mixed
models to be interpreted as effect sizes.

We obtained phylogenies for both sets of species from the
super-phylogeny provided by Zanne et al. (2014) using the pro-
gram PHYLOCOM (Webb et al., 2008). This time-calibrated phy-
logeny was constructed from seven gene regions for 32 223 plant
species using maximum-likelihood estimates in RAXML (Sta-
matakis, 2014). Use of the same super-phylogeny ensures that
any differences between data sets in phylogenetic patterns are free
from biases that might arise if we had instead used phylogenies
constructed using different methods.

We fitted the PLMMs and LMMs (Eqns 1–4) with maximum
likelihood using function COMMUNITYPGLMM in the PEZ (Pearse
et al., 2015) package of R (R Core Team, 2015). We have pro-
vided R code for the Dune Meadows as Notes S2. Phylogenetic
signals of functional traits were tested using R packages PHYLOLM

(Ho & An�e, 2014) and PICANTE (Kembel et al., 2010).

Results

Phylogenetic community composition

Phylogenetically related species co-occurred more often than
expected by chance in both Dune Meadows and Pine Barrens
communities (Fig. 2). The PLMM (Eqn 1) revealed significant
phylogenetic attraction for abundance data in both the Dune
Meadows and the Pine Barrens communities (P = 0.005 and
0.013, respectively; Table 1). For presence/absence data, the
Dune Meadows data had positive but nonsignificant phyloge-
netic attraction (r2

c = 0.032, P = 0.147; Table S1), whereas phy-
logenetic attraction in the Pine Barrens was positive and
significant (r2

c = 0.044; P = 0.018; Table S1). We found no evi-
dence for phylogenetic repulsion in either data set (Tables 1, S1).

Are there residual phylogenetic patterns after incorporating
functional traits?

Because species abundances in both Dune Meadows and the Pine
Barrens communities showed phylogenetic attraction, we investi-
gated whether these phylogenetic patterns remained after incor-
porating information about functional traits. Based on Eqn 2, we
first added traits as fixed and random effects that provided infor-
mation (as measured by AIC) about the abundances of species
among communities. We then added any additional traits to the
model that reduced the remaining phylogenetic signal in the
residual variation (if any) of species abundances among sites.

In the Dune Meadows communities, SLA and life history (an-
nual or perennial) were selected as important traits in the model
of species abundances as measured by the AIC (Eqn 2 without
terms bspp[i] and ci). Including these two traits as fixed terms and
SLA as a random term reduced the phylogenetic variation (r2

c ,
Eqn 2) by 20% (Table 2a). Including the additional trait seed
mass as both fixed and random terms further reduced r2

c by 5%.
SLA, life history, and seed mass thus reduced only a small frac-
tion (25%) of the total phylogenetic signal in community com-
position (abundance patterns of species across sites), with strong

phylogenetic attraction remaining after including the traits
(Table 2b). This finding is consistent with additional evidence
provided by analysing all five traits separately (Tables 3, S3).
Although one or two (based on Pagel’s k or Blomberg’s K,
respectively) of the five traits showed phylogenetic signal among
species, no trait explained any of the variance among species (re-
gardless of phylogeny) in the log abundance of species among
sites (in Eqn 3 the estimate of r2

b was zero). By contrast, the par-
allel analyses of species presence/absence in the Dune Meadows
data show that including four of five traits reduced phylogenetic
signal to almost zero (although the initial value of r2

c = 0.0398
was not significant; Table S2).

In the Pine Barrens communities, leaf circularity, leaf width,
seed mass, and pollination mode were identified as important in
explaining species abundances among sites as measured by the
reduction in AIC of the nonphylogenetic model of species abun-
dances (Eqn 2 without terms bspp[i] and ci; Table 2a). Including
these four traits in the phylogenetic model (all of them as fixed
terms; leaf circularity and leaf width as random terms) eliminated
phylogenetic variation in the residuals (r2

c went to 0 in Eqn 2).
Thus, these functional traits suffice to account for all the phyloge-
netic signal in the composition of the Pine Barrens communities.
In analyses of each trait, most traits showed strong phylogenetic
signal (Table 3). Five traits – leaf circularity, leaf width, leaf
thickness, SLA, and animal dispersal (marginally) – also affected
plant species’ abundances among sites (r2

b > 0, Eqn 3; Table 3),
indicating that different sites favour particular species based on
these traits. Among these five traits, each trait covaries with either
leaf circularity or leaf width. For example, animal dispersal
covaries with leaf circularity (r = 0.484), and SLA and leaf thick-
ness covary with leaf width (r = 0.458 and �0.504, respectively).
Therefore, even though only leaf circularity and leaf width were
included via forward selection in the final model (Table 2a), these
might have accounted for possible phylogenetic signal produced
by the three other traits. This result provides supporting evidence
that these traits are important in accounting for phylogenetic pat-
terns in community structure. In parallel analyses of species pres-
ence/absence, r2

c again declined to zero after including traits via
forward selection (Table S2a).

The overall fits of the models give a detailed statistical descrip-
tion of the variation in abundance and presence/absence among
communities. For abundance in the Pine Barrens data set
(Table 2a), the model with variation in the effects of traits among
sites (random effects) has fixed effects of leaf circularity, leaf
width, seed mass, and pollination mode. Coefficients of seed
mass and leaf circularity are positive, suggesting that species with
higher values of each of the traits are more common across all
communities. Leaf width has associated nonzero random effects,
implying that sites differ in the relationships between leaf width
and species abundance. There is large among-species variation in
mean log abundance (r2

a = 0.878). Interestingly, this variation
lacks any phylogenetic component (r2

b = 0), meaning that there
is no phylogenetic signal in overall abundance. There is some
site-to-site variation in mean log total abundance across all
species (r2

site = 0.0058). This reflects the fact that some sites have
higher overall species abundance. As discussed in the preceding
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paragraph, there is no site-to-site variation in log abundances in
which phylogenetically related species are more likely to show
high abundance in the same sites (r2

c = 0). Finally, the residual
variance r2

resid = 0.512 implies a lot of variation in the log abun-
dances of individual species among sites that is not explained by
any other component of the model. This example shows that the
fully fitted PLMM provides a detailed accounting of the effects of
traits on variation in community composition, assessing patterns
of both variation among species and the variation among sites.

Which environmental variables drive phylogenetic pattern?

If including trait information in the PLMM of community com-
position (Eqn 2) leaves residual phylogenetic signal in the unex-
plained variation, this would suggest that there are other
unmeasured traits that affect community composition. To search
for any such additional traits, we investigated whether there was
phylogenetic signal in the response of species to different envi-
ronmental variables. Such signals could help us narrow the search

Trifolium pratense

Trifolium repens

Vicia lathyroides

Comarum palustris

Salix repens

Chenopodium album

Sagina procumbens

Rumex acetosa

Scorzoneroides autumnalis

Hypochaeris radicata

Achillea millefolium

Bellis perennis

Cirsium arvense

Plantago lanceolata

Empetrum nigrum

Ranunculus flammula

Elymus repens

Alopecurus geniculatus

Poa trivialis

Poa pratensis

Anthoxanthum odoratum

Agrostis stolonifera

Aira praecox

Lolium perenne

Bromus hordaceus

Juncus bufonius

Juncus articulatus

Eleocharis palustris

Dune Meadows

Fragaria virginiana
Aronia melanocarpa

Spiraea alba

Prunus serotina
Prunus virginiana

Potentilla simplex

Rosa spp
Rubus spp

Rhamnus frangula

Quercus alba
Quercus ellipsoidalis

Comptonia peregrina

Corylus americana
Betula papyrifera

Populus grandidentata
Populus tremuloides
Viola spp
Toxicodendron rydbergii
Acer rubrum

Euthamia graminifolia
Hieracium aurantiacum
Krigia biflora
Aster macrophyllus
Aralia nudicaulis
Viburnum acerifolium
Diervilla lonicera
Ilex verticillata

Apocynum androsaemifolium

Galium triflorum
Mitchella repens

Melampyrum lineare
Gaultheria procumbens
Gaylussacia baccata
Epigaea repens
Pyrola rotundifolia
Vaccinium angustifolium
Trientalis borealis
Lysimachia quadrifolia
Cornus canadensis

Coptis trifolia
Anemone quinquefolia

Uvularia sessilifolia
Smilax tamnoides

Maianthemum canadense
Maianthemum racemosum
Cypripedium acaule

Phalaris arundinacea
Poa spp
Carex spp

Pinus strobus

Pinus banksiana
Pinus resinosa

Osmunda claytoniana
Osmunda cinnamomea
Lycopodium clavatum

Pine Barrens(a) (b)

Fig. 2 Phylogeny and relative abundance of plant species found in the Dune Meadows and the Pine Barrens communities. The size of dots is proportional
to abundances within each site.
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for additional traits to those that affect the response of species to
the environmental variables.

In both data sets, species varied greatly in how their abun-
dances responded to the measured environmental variables

(Table 4). However, in the Dune Meadows data set we only
found strong phylogenetic signal in the variation of species
responses to manure (last column, Table 4). Thus, related species
tend to respond similarly to similar applications of manure. This

Table 1 Estimated components of variance from the phylogenetic linear mixed model (PLMM) of species abundances (log-transformed) in Dune Meadows
and Pine Barrens data sets

Data set PLMM r2
a r2

b r2
c r2

d r2
e P (r2

c = 0)

Dune Meadows Phylogenetic attraction:
c ~Gaussian(0, kron(Im, r2

cƩspp))
0.80 0.00958 0.00781 0.00265 0.36 0.005

Phylogenetic repulsion:
c ~Gaussian(0, kron(Im, r2

c (Ʃspp)
�1)

0.90 0.00126 0 0.00291 0.39 0.500

Nonnested model: c removed 0.90 0.00291 – 0.00126 0.39 –
Pine Barrens Phylogenetic attraction:

c ~Gaussian(0, kron(Im, r2
cƩspp))

0.98 0 0.00940 0.00266 0.51 0.013

Phylogenetic repulsion:
c ~Gaussian(0, kron(Im, r2

c (Ʃspp)
�1)

0.98 0 0 0.0228 0.53 0.500

Nonnested model: c removed 0.98 0.0229 – 0 0.53 –

Phylogenetic attraction and repulsion are estimated in separate models by r2
c (Eqn 1). r

2
a and r2

b are the estimated variances of the overall abundance of
species partitioned into nonphylogenetic (r2

a) and phylogenetic (r2
b) components; r2

d is the estimated variance of overall abundance for all sites; and r2
e is

the residual variance. Significant results (P < 0.05) are given in bold.

Table 2 Proportion of phylogenetic signal of species abundances in the Dune Meadows and Pine Barrens communities reduced after including measured
functional traits (Eqn 2); (a) models for both data sets with measured functional traits that are important in explaining species composition; (b) models with
additional measured functional traits that can further reduce phylogenetic variation in the residual variation; because there is no residual phylogenetic
variance (r2

c = 0) for Pine Barrens after the first selection, additional functional traits were not added

Dune Meadows Pine Barrens

(a) Terms With traits Without traits Decrease in signal Terms With traits Without traits Decrease in signal

Random terms r2
a 0.0344 0.0316 r2

a 0.8780 0.8771
r2
b 0.0004 0.0005 r2

b 0 0
r2
c 0.0066* 0.0082* 20% r2

c 0.0000 0.0094* 100%
r2
SLA 0.0030 r2

circ 0.0000
r2
l;width 0.0984

r2
site 0.0144 0.0026 r2

site 0.0058 0.0027
r2
resid 0.3467 0.3554 r2

resid 0.5120 0.5137
Fixed terms Intercept 0.510*** 0.510*** Intercept 1.612** 1.612**

SLA 0.172** 0.170*** Seed.mass 0.082* 0.083*
Annual �0.387** �0.387** Polli.mode �0.844 �0.844

Circ 0.249 0.249
L.width �0.029 �0.029

Dune Meadows

(b) Terms With traits Without traits Decrease in signal

Random terms r2
a 0.0364 0.0312

r2
b 0.0004 0.0004

r2
c 0.0062* 0.0083* 25%

r2
SLA 0.0155

r2
Seed:mass 0.0134

r2
site 0.0036 0.0027

r2
resid 0.3332 0.3551

Fixed terms Intercept 0.456*** 0.455***
SLA 0.172** 0.169***
Annual �0.138** �0.140**
Seed.mass �0.029 �0.028

r2
a and r2

b are the estimated variances of the overall abundance of species partitioned into nonphylogenetic (r2
a) and phylogenetic (r2

b) components. SLA,
specific leaf area; Seed.mass, seed mass; Polli.mode, pollination mode; Circ, leaf circularity; L.width, leaf width. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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suggests that functional traits related to responses of plants to soil
nutrients may help to further explain patterns in community
composition.

In the Pine Barrens abundance data, we found no phylogenetic
signal in the variation among species in their responses to any
measured environmental variable. By contrast, in the presence/
absence data we found strong phylogenetic signal in species’
responses to minimum temperature, soil pH, and calcium (Ca)
and manganese (Mn) concentrations (PGLMM, Table S4).
Related species thus tend to occupy similar Pine Barrens sites as
measured by these environmental variables. This pattern, again
reflecting mostly soil conditions, suggests that functional traits
related to nutrient acquisition and physiology are affecting
species incidence across sites. This is true even though four traits
– pollination mode, seed mass, leaf width, and wind dispersal –
together eliminated phylogenetic signal in the residual variation
(Table S2).

Discussion

Our analyses address the question: when models of community
structure incorporate functional trait data, how much phyloge-
netic pattern remains in the unexplained variation? If no residual
phylogenetic patterns in species abundance or presence/absence
remain after including measured functional traits, then phyloge-
netic information itself may provide little additional insight into
community assembly. In contrast, if significant residual phyloge-
netic patterns remain after including measured functional traits,
then phylogenetic relationships include important information
beyond what is provided by these traits. Therefore, answers to
this question provide an important starting point for the search
for additional traits or other factors that could underlie commu-
nity assembly.

Our statistical framework addresses this question using phylo-
genetic mixed models (PLMMs and PGLMMs). We found that
phylogenetically related species are indeed more likely to occupy
the same sites and reach similar abundances within two quite dis-
tinct communities: Dune Meadows in the Netherlands and Pine

Table 3 Phylogenetic signal present in the measured functional traits of
Dune Meadows and Pine Barrens

Data set Trait Pagel’s k K P (r2
b = 0)

Dune
Meadows

Leaf specific
area (SLA; m2 kg�1)

0.63 0.09 0.500

Leaf dry mass
content (LDMC; %)

0.76* 0.11* 0.500

Plant height (cm) 0.00 0.12* 0.500
Seed mass (g per seed) 0.00 0.07• 0.428
Life cycle (annual
or nonannual)

0.00 0.06 0.500

Pine
Barrens

Leaf specific area
(SLA; m2 kg�1)

0.57** 0.32** 0.002

Leaf circularity
(dimensionless)

1.00*** 0.95*** 0.001

Leaf thickness (mm) 0.75*** 0.78*** 0.001
Leaf width (cm) 1.00*** 0.61*** 0.008
Animal dispersal
(yes or no)

0.83*** 0.52*** 0.054

Life cycle (annual
or nonannual)

0.00 0.28 0.479

Growth habit (woody
or nonwoody)

1.37*** 0.48** 0.500

Pollination mode
(biotic or abiotic)

0.08 0.20 0.500

Seed mass (g per seed) 0.66 0.36* 0.373
Leaf dry mass
content (LDMC; %)

0.54* 0.29** 0.500

Stem dry mass
content (SDMC; %)

0.48 0.25* 0.500

Plant height (cm) 0.76** 0.31** 0.500
Leaf length (cm) 0.77*** 0.39** 0.500
Leaf carbon content (%) 0.68** 0.16 0.500
Leaf nitrogen content (%) 0.00 0.15 0.334
Wind dispersal (yes or no) 1.17*** 0.61*** 0.265
Unassisted
dispersal (yes or no)

0.00 0.15 0.500

We expected that functional traits playing roles in phylogenetic patterns
will have phylogenetic signal and differences among sites in how they
affect the abundance of species (r2

b = 0; Eqn 3; P-values in last column). •,
P < 0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001. Significant results
(P < 0.10) are given in bold.

Table 4 Variation in species abundances in relation to environmental
variables (Eqn 4)

Data set
Environmental
variables

P-values r2
g

(no phylogenetic
signal)

P-values for r2
h

(phylogenetic signal)

Dune
Meadows

Manure < 0.001 0.025
Soil moisture < 0.001 0.500
Soil A1 depth < 0.001 0.500
Management 0.221 0.186
Land use 0.099 0.350

Pine
Barrens

Minimum
temperature

< 0.001 0.500

Precipitation < 0.001 0.500
Canopy shade 0.002 0.500
Total
exchange
capacity

0.002 0.500

Organic matter 0.001 0.500
pH < 0.001 0.500
Nitrogen (N) < 0.001 0.500
Phosphorus (P) 0.039 0.500
Magnesium (Mg) 0.030 0.500
Potassium (K) 0.007 0.500
Sodium (Na) < 0.001 0.500
Manganese (Mn) < 0.001 0.500
Calcium (Ca) < 0.001 0.208
Clay 0.110 0.500
Silt 0.070 0.500
Sand 0.117 0.500
Iron (Fe) 0.500 0.500
Sulphur (S) 0.458 0.500
Zinc (Zn) 0.500 0.500
Aluminium (Al) 0.500 0.500

In the Dune Meadows data set, only species’ responses to manure levels
showed phylogenetic signal; in the Pine Barrens data set, although 13 of
the 20 environmental variables co-varied with variation in species
abundances among sites, none showed phylogenetic signal in these
responses. Significant results (P < 0.05) are given in bold.
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Barrens forests in Wisconsin, USA. In the Pine Barrens commu-
nities with more species, sites, and functional traits, we found no
phylogenetic signal in the residual variation in species abundance
and presence/absence among sites after including functional traits
in the phylogenetic mixed models (Eqn 2). In the simpler Dune
Meadows communities, two of five traits had phylogenetic signal,
and these traits removed all phylogenetic pattern in the residual
variation in species presence/absence among sites. By contrast,
these traits only reduced phylogenetic patterns in species abun-
dance by 25% in the PLMM.

Incorporating functional traits reduced the phylogenetic com-
ponent of residual variation in species composition for both
data sets, but what could explain the remaining phylogenetic
component of the variation in abundance of species among sites
in the Dune Meadow communities (Fig. 1b, r2

phy�reduced)? Some
unknown historical biogeographical process or meta-community
dynamics could account for this. However, sites in the Dune
Meadow data sets all occur within the same 86-km2 island,
making it unlikely that historical biogeographical processes
played a key role in the assembly of these communities. It thus
seems more likely that unmeasured functional traits played a
role. Species abundances among Dune Meadows sites varied in
apparent response to several measures of soil conditions, with
phylogenetically related species responding similarly to nutrient
concentrations (manure in Table 4). This response suggests that
unmeasured traits (with a phylogenetic component) related to
nutrient uptake and physiological processes affect the abundance
of species across these Dune Meadows communities. The
scarcity of data on traits related to belowground nutrient acqui-
sition processes (root structure, mycorrhizal associations, etc.)
may thus limit our ability to account for variation in species’
abundances.

Despite the fact that measured traits appear unrelated to
species’ responses to the soil and climate gradients used in
Table 4, measured traits still reduced much of the residual phylo-
genetic pattern in community composition, especially in the Pine
Barrens communities. A possible explanation for this is that traits
affecting how species respond to soil and climate variables covary
with some of the measured traits. If traits covary, phylogenetic
patterns driven by one trait could be statistically absorbed by
another trait (similar to the effects of collinearity of independent
variables). Conversely, soil and climate variables could covary
with other environmental variables that affect plant species
through the measured traits. It is difficult to infer just what mech-
anisms may be acting here without additional (ideally experimen-
tal) data. Although we have shown that the measured functional
traits reduce most of the residual phylogenetic structure in the
Pine Barrens communities, these associations could still mask
important unmeasured traits.

We found that functional traits reduce a greater portion of the
phylogenetic signal in species presence/absence than in species
abundances in the Dune Meadows communities. This suggests
that, although these functional traits strongly affect the suitability
of sites for species, they have less effect on the ability of these
species to attain large population sizes. Abundance may instead
reflect local colonization dynamics or interactions with herbivores

and pathogens influenced by traits that we did not measure.
Thus, abundance data may provide more information about
community assembly than just presence/absence data when
analysing the phylogenetic components of community assembly
(Freilich & Connolly, 2015).

Implications

It is often assumed that phylogenetic relationships among
species contain additional, and possibly much more, ecological
information relevant for predicting community assembly than
what we find in commonly measured functional traits. This has
led some community ecologists to argue that studies analysing
community composition should incorporate information from
both phylogenies and functional traits (e.g. Cadotte et al.,
2013). With the methods we have presented, this is a testable
hypothesis, and the Dune Meadows and Pine Barrens data sets
give mixed results. On the one hand, the Dune Meadows
example showed that phylogenies can indeed provide ecological
information in addition to that contained in a small set of
functional traits for predicting abundances of species among
sites (Vane-Wright et al., 1991; Cadotte et al., 2009). Although
functional traits are necessary to accurately infer the processes
driving phylogenetic patterns (Kraft et al., 2007; Cavender-
Bares et al., 2009), measured functional traits alone appear to
provide an incomplete picture of abundances in the Dune
Meadows. A recent study suggested that measured functional
traits may contain less information about responses to environ-
mental factors than the identity of species (Clark, 2016), imply-
ing limitations of using functional traits alone in explaining
community assembly. On the other hand, our results from the
Pine Barrens suggest that, in some communities, measured
functional traits can reduce most of the phylogenetic pattern of
community composition.

Our analyses are based on statistical models rather than metrics
applied to data and tested using randomization methods. The
current popularity of model-based methods in ecology reflects
the fact that they are more interpretable, flexible, and statistically
powerful than either null models or conventional algorithmic
multivariate analyses (Warton et al., 2014). Here, we showed the
power of phylogenetic mixed models (PLMMs and PGLMMs)
for detecting and investigating phylogenetic patterns in commu-
nity composition. This ability to combine phylogenies and func-
tional traits into the same statistical model provides an
integrated, quantitative framework for analysing ecological com-
munities and predicting the incidence and abundance of one
taxon from others. Using our methods to examine the overlaps of
information about community composition derived from func-
tional traits and phylogeny can provide useful insights and direc-
tions for subsequent analyses.

Statistical models also show the distinction between functional
traits as explanations of community structure and phylogenies as
patterns in the residual variation not accounted for by traits. Sta-
tistical models of community structure treat phylogenies as
hypotheses for the pattern of covariances in the residual, unex-
plained variation. This implies that phylogenetic information
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does not explain anything in the same way that functional traits
explain patterns as independent variables. Although researchers
commonly talk about community patterns being ‘explained by
phylogenies’, it is more accurate to say that covariances in the
unexplained variation in community structure are consistent with
the patterns anticipated to emerge from phylogenetic relation-
ships.

We can use phylogenetic analyses to infer other unmeasured
functional traits that may underlie patterns in community com-
position. Species often differ in how they respond to gradients in
environmental conditions, but related species often respond simi-
larly. In such cases, we expect some functional trait or traits to
underlie these responses. The phylogenetic patterns we found
here show that plant species commonly respond to edaphic con-
ditions such as soil nutrient and chemistry. This highlights our
frequent lack of data on functional traits related to roots and
water/nutrient uptake. Thus, the integrated PLMM models
provide valuable tools in cases where measured traits cannot fully
account for phylogenetic patterns in ecological communities by
suggesting which additional traits might be most informative for
improving our ability to account for ecological patterns.

The assembly of plant and animal communities is clearly a
complex phenomenon involving many processes. Some of these
reflect differences among species assessed using the traits that can
be measured. Some of these trait differences, in turn, reflect
shared ancestry and conservative patterns of trait change among
evolving lineages. Therefore, measured functional traits are
expected to overlap with phylogenies in their information about
species composition. The proportion of this overlap, however,
varies from community to community, as found here between
the two communities we studied. The tools presented here
allowed us to explore these differences. We might also envision
developing analogous methods to partition and assess the effects
of other processes affecting community assembly (e.g. meta-
community or neutral dynamics). This would require us to
explicitly model the effects of these processes on variation in
species incidence and abundance, and to be able to distinguish
the patterns that emerge from those of alternative models.
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