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Summary

1. A growing number of studies incorporate functional trait information to analyse patterns and processes of

community assembly. These studies of trait–environment relationships generally ignore phylogenetic relation-

ships among species. When functional traits and the residual variation in species distributions among communi-

ties have phylogenetic signal, however, analyses ignoring phylogenetic relationships can decrease estimation

accuracy and power, inflate type I error rates and lead to potentially false conclusions.

2. Using simulations, we compared estimation accuracy, statistical power and type I error rates of linear mixed

models (LMM) and phylogenetic linear mixed models (PLMM) designed to test for trait–environment interac-

tions in the distribution of species abundances among sites. We considered the consequences of both phyloge-

netic signal in traits and phylogenetic signal in the residual variation in species distributions generated by an

unmeasured (latent) trait with phylogenetic signal.

3. When there was phylogenetic signal in the residual variation in species among sites, PLMM provided better

estimates (closer to the true value) and greater statistical power for testingwhether the trait–environment interac-

tion regression coefficient differed from zero. LMMhad unacceptably high type I error rates when therewas phy-

logenetic signal in both traits and the residual variation in species distributions. When there was no phylogenetic

signal in the residual variation in species distributions, LMMand PLMMhad similar performances.

4. Linear mixed models that ignore phylogenetic relationships can lead to poor statistical tests of trait–environ-
ment relationships when there is phylogenetic signal in the residual variation in species distributions among sites,

such as caused by unmeasured traits. Therefore, phylogenies and PLMMs should be used when studying how

functional traits affect species abundances among communities in response to environmental gradients.

Key-words: fourth-corner problem, functional traits, phylogenetic linear mixed model, phylogeny,

trait–environment relationship

Introduction

Species composition and abundance in ecological communi-

ties depend in part on both the environmental conditions at

a site and the traits expressed by species that allow them to

live under these environmental conditions. Typically, envi-

ronmental conditions at a site allow only a subset of species

from the regional species pool to reach high abundances,

with different functional traits favouring species in different

sites. Therefore, both environmental conditions and func-

tional traits play an important role in explaining species

abundances in communities. To better understand commu-

nity assembly, we need to study the statistical interaction

between environmental conditions at a site and the func-

tional traits of species that live there (McGill et al. 2006;

Westoby & Wright 2006).

Common statistical approaches to analyse how traits medi-

ate species responses to environmental variables have used

either ordination with permutation tests (the fourth-corner

problem and RLQ analysis, Legendre, Galzin & Harmelin-

Vivien 1997; Dray & Legendre 2008) or an indirect two-step

approach. The fourth-corner problem links three data matrix

tables: a site 9 species incidence/abundance matrix (L), a

site 9 environmental variables matrix (R) and a

species 9 traits matrix (Q). The traits 9 environmental vari-

ables matrix (R’LQ) is the fourth matrix (thus explaining the

etymology of the approach). While this approach provides a

good qualitative overview of how traits and environmental

variables are associated, it does not give information about

species-specific variation in responses to environmental

variables, and it is difficult to use for prediction. The second,

two-step approach first fits species-specific regressions of abun-

dance against environmental variables; the resulting regression

coefficients are then regressed against traits (e.g. Soudzilovs-

kaia et al. 2013). This approach, while informative at the spe-

cies level, does not incorporate all community data in a single

analysis and has low statistical power (Jamil et al. 2013).
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The interactions between traits and environmental vari-

ables can also be directly tested with model-based methods

(Bolker et al. 2009; Jamil et al. 2013; Brown et al. 2014;

Warton et al. 2014; Ovaskainen, De Knegt & del Mar

Delgado 2016). Statistically, the interaction between traits

and environmental variables can be estimated as the trait–
environment interaction coefficient in generalized linear

models (GLMs, Brown et al. 2014), linear mixed models

(LMMs, Ovaskainen, De Knegt & del Mar Delgado 2016)

or generalized linear mixed models (GLMMs, Pollock,

Morris & Vesk 2012; Jamil et al. 2013). These model-based

methods allow model selection and prediction, and are

often more flexible and powerful than the two-step

approaches and more informative at the species level than

fourth-corner methods (Ives & Helmus 2011; Jackson et al.

2012; Brown et al. 2014; Warton et al. 2014).

Most analyses of trait–environment interactions ignore

phylogenetic relationships among species, despite the large

literature on phylogenetic analyses in comparative studies

(Felsenstein 1985; Harvey & Pagel 1991; Paradis 2012;

Garamszegi 2014) and the relevance of phylogeny to many

areas of ecology (Webb et al. 2002; Cavender-Bares et al.

2009). This can lead to statistical problems because func-

tional traits often exhibit a phylogenetic pattern in which

closely related species share similar trait values (i.e. phyloge-

netic signal, Blomberg, Garland & Ives 2003). If there are

multiple traits that affect species abundance or incidence (or

other characteristic of interest), then the unmeasured traits

with phylogenetic signal may generate covariance in the

unexplained, residual variation after accounting for mea-

sured traits. This covariance in the residual variation will

reflect the phylogeny, and will affect model estimation and

hypothesis testing of regression coefficients (e.g. Felsenstein

1985; Martins & Hansen 1997; Garland, Bennett &

Rezende 2005; Revell 2010).

Here, we investigate the need to incorporate phylogenetic

covariance among species into regressions for trait–environ-
ment interactions. We considered a regression problem in

which there is a causal but unmeasured (latent) trait that intro-

duces unexplained variability in species abundance, and phylo-

genetic covariance in the unexplained variation if the

unmeasured trait has phylogenetic signal. This gives four possi-

ble cases (Revell 2010): the pairwise combinations of whether

or not there is phylogenetic signal in the measured trait in the

regression, and whether or not there is phylogenetic signal in

the residual variation. We then compared the accuracy, type I

error rates and statistical power of LMMs and phylogenetic

linear mixed models (PLMMs, Ives & Helmus 2011) in esti-

mating the trait–environment interaction coefficient. We used

mixed models instead of GLMs because ignoring random

effects may inflate type I errors (ter Braak, Peres-Neto &Dray

2017); in addition, random effects are required to account for

phylogenetic relationships among species. We show that when

there is phylogenetic signal in the residual variation (latent

trait), PLMM outperformed LMM, with LMM performing

particularly poorly when there is also phylogenetic signal in the

measured trait.

Materials andmethods

We simulated data to test the importance of accounting for phyloge-

netic relationships when studying how functional traits interact with

environmental variables to affect species abundances. All simulations

and calculations were performedwithR (RCore Team, 2015).

SIMULATIONS

We simulated the abundance Y of species j (j = 1, . . ., n) at site s

(s = 1, . . ., m) that depends on two site environmental variables (env1

and env2) and two species functional traits (trait1 and trait2) using the

model:

Yi ¼ aþ b1env1site½i� þ b2env2site½i� þ b3trait1spp½i� þ b4trait2spp½i�
þ b5(env1site½i� � trait1spp½i�Þ þ b6ðenv1site½i� � trait2spp½i�Þ þ ei:

eqn 1

Functions spp[i] and site[i] map the observation i to the identity of

the species and site, respectively (Gelman &Hill 2007, pp. 251–252), so

i takes values from 1 to nm. We assumed both environmental variable

env1 and functional trait trait1 are measured. Env1 (e.g. soil fertility,

canopy cover) affects the abundance of all species among sites

(b1 6¼ 0), and trait1 (e.g. nutrient absorption capacity, specific leaf

area) determines in part the overall abundance of species (b3 6¼ 0). Fur-

thermore, there is an interaction between env1 and trait1 (b5 6¼ 0)

implying that trait1 affects the performance of species along the envi-

ronmental gradient env1. To introduce unexplained variation and phy-

logenetic signal, we treated env2 and trait2 as unmeasured (latent)

variables. Like env1, env2 has a direct effect on species abundances

(b2 6¼ 0). Like trait1, trait2 determines in part species abundances

(b4 6¼ 0) and has an interactive effect with env1 (b6 6¼ 0). As we are

mainly interested in the trait 9 environment interactions for the mea-

sured data (env1 and trait1), we did not include the interactions

between env2 and trait1 or trait2.

Our goal is to investigate the interaction between env1 and trait1

which is given by b5. Consequently, we set all parameters in eqn (1)

other than b5 to be 1.We simulated ei as a normal random variable that

is independent among species and sites. In this way, we treated the

abundance of speciesY as log-transformed values from count data.We

did not simulate abundance as raw count data because log transforma-

tion of count data usually does not affect the significance tests for

regression coefficients when low count values (<5) are uncommon (Ives

2015;Warton et al. 2016).

We simulated the phylogeny as a uniform birth–death process with

birth rate = 1 and death rate = 0 using the sim.bdtree function of

the geiger R package (Harmon et al. 2008). Other assumptions to

simulate the phylogenies did not affect our results and conclusions

(Appendix S1, Supporting Information). The phylogeny gives the

expected phylogenetic covariances among species under Brownian

motion evolution (Grafen 1989; Martins & Hansen 1997) that can be

used to construct amatrixC. Specifically, the length from base to tip of

the phylogenetic tree is proportional to the anticipated variance in trait

values for a species, and covariances are given by the shared branch

lengths between two species (i.e. the distance from the base to the most

recent common ancestor). When there is no phylogenetic signal, the

(zero) covariance structure is given by the identity matrix I. Because

functional traits may or may not have phylogenetic signal, we simu-

lated four scenarios for the two functional traits: trait1 with phyloge-

netic signal but not trait2 (trait1: C; trait2: I); trait2 with phylogenetic

signal but not trait1 (trait1: I; trait2: C); both traits with phylogenetic

signal (trait1: C; trait2: C) and neither trait with phylogenetic signal
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(trait1: I; trait2: I). Functional traits without phylogenetic signal were

simulated as N(0, 1) normal random variables; functional traits with

phylogenetic signal were simulated using the fastBM function of the

phytools R package (Revell 2012). We simulated env1 with a uni-

form distribution ranging from �1 to 1 to generate a strong environ-

mental gradient. Variable env2 and residuals ei were simulated as N(0,

1) normal random variables.

We conducted simulations with 30 sites. To study type I error rates

(false positives that incorrectly reject the true null hypothesis), we set

b5 = 0 and varied the number of species (20, 30, 40, 50, 60, 70, 80). To

study statistical power, we varied the value of b5 (0, 0�25, 0�5, 0�75, 1)
and fixed the number of species at 50. For each case we performed 1000

simulations.

MODEL FITTING

We fit both LMM and PLMM to the simulated datasets with R pack-

agepez (Pearse et al. 2015). The LMMhas the form

Yi ¼ aþ aspp½i� þ bsite½i� þ ðb1 þ cspp½i�Þenv1site½i�
þ b3trait1spp½i� þ b5env1site½i� � trait1spp½i� þ ei

a�Gaussianð0;r2
aInÞ

b�Gaussianð0;r2
bImÞ

c�Gaussianð0;r2
cInÞ

e�Gaussianð0;r2
eImnÞ

eqn 2

Here, we use the convention of multilevel models (Gelman & Hill

2007), with fixed and random effects given by Greek and Latin letters,

respectively. The fixed effects b1, b3 and b5 correspond to the same coef-

ficients in the simulation model (eqn 1). Random effect aspp[i] allows

different species to have different overall abundance to capture effects

of the term b4 trait2spp[i] in eqn (1). Random effect bsite[i] allows different

sites to have different overall abundance across all species within that

site to capture effects of the term b2 env2site[i] in eqn (1). Finally, ran-

dom effect cspp[i] allows different species to have different responses to

env1 to capture effects of the term b6 env1site[i] 9 trait2spp[i] in eqn (1).

The PLMM includes all terms of eqn (2), plus phylogenetic versions

of random terms aspp[i] and cspp[i]:

Yi ¼ aþ ðaspp½i� þ a
p
spp½i�Þ þ bsite½i� þ ðb1 þ cspp½i� þ c

p
spp½i�Þ

env1site½i� þ b3trait1spp½i� þ b5env1site½i� � trait1spp½i� þ ei

a�Gaussianð0;r2
aInÞ

ap �Gaussianð0;r2
apCÞ

b�Gaussianð0;r2
bImÞ

c�Gaussianð0;r2
cInÞ

cp �Gaussianð0;r2
cpCÞ

e�Gaussianð0;r2
eImnÞ

eqn 3

Random effect a
p
spp½i� implies closely related species to have similar

overall abundance; this will capture the main effects of traits in the sim-

ulations (eqn 1) if trait2 has phylogenetic signal. Similarly, random

effect cpspp½i� allows closely related species to have similar responses to

env1, thereby capturing the interactive effect of trait2 and env1 in the

simulations if trait2 has phylogenetic signal.

Results

To compare LMMs and PLMMs, we focused on the

regression coefficient b5 for the interaction between env1

and trait1. For each simulated dataset, we compared the

accuracy of LMM and PLMM by determining the fre-

quency with which one gave a more accurate estimate of b5
than the other, and also by calculating the means and stan-

dard deviations of the estimates of b5. To determine type I

errors (when the true value of b5 = 0) and statistical power

(when the true value of b5 > 0), we counted the number of

estimates that were scored as significant at the a = 0�05
level for both models.

NO PHYLOGENETIC SIGNAL IN TRAIT2

When the unmeasured trait2 did not have phylogenetic signal

(trait1: I; trait2: I, and trait1:C; trait2: I), implying no phyloge-

netic signal in the unexplained variation in species abundances

among sites, LMM and PLMM had similar estimation accu-

racy (Figs 1–2), type I error rates and power (Fig. 3). Aver-

aged across all simulation scenarios, in roughly 50% of

simulations LMMproduced better estimates (closer to the true

value) of b5 (Fig. 1). The estimators of b5 from LMM and

PLMM had similar means and standard deviations (Figs 2a,b

and S1). Furthermore, LMMandPLMMhad almost identical

type I error rates and power across all simulation scenarios

(Fig. 3). They also gave very similar estimates when b5 > 0

(Fig. S2). These results are explained, in part, by the fact that

in about 65% of simulations across all scenarios we investi-

gated with no phylogenetic residual variation (trait2: I), the

estimates of both r2
ap and r2

cp in the PLMM were zero, so the

PLMM collapsed to the LMM and estimates of b5 were

the same (�numerical accuracy in the optimizations).

PHYLOGENETIC SIGNAL IN TRAIT2

When the unmeasured trait2 had phylogenetic signal (trait1: I;

trait2: C, and trait1: C; trait2: C), PLMM had substantially

higher estimation accuracy (Figs 1–2), better type I error con-
trol (Fig. 3a) and higher power (Fig. 3b) than LMM. Type I

error control and power were particularly poor for LMMwhen

trait1 also had phylogenetic signal (i.e. trait1:C; trait2:C).

Averaged across all simulation conditions, in about 75%

simulations PLMM produced more accurate estimates of b5
(Fig. 1), and the variance of the estimator of b5 (Figs 2 and S1)
was consistently lower than LMM. This was true regardless of

the number of species, the true value of b5 and the status of the

measured trait1 (with or without phylogenetic signal) used in

simulations. In addition, for type I error control and power,

LMM had particularly poor performance when the measured

trait1 had phylogenetic signal (trait1:C; trait2:C). For simula-

tions with b5 = 0 (Fig. 3), LMM rejected H0: b5 = 0 at the

a = 0�05 level in ~25%of the datasets with 20 species, and type

I error control became worse as the number of species

increased. When there was no phylogenetic signal in trait1

(trait1: I; trait2: C) and type I error control was only slightly

elevated, LMM had much lower power than PLMM

(Fig. 3b).

We investigated further the particularly poor type I error

control of LMMwhen there is phylogenetic signal in both the

measured trait and the unexplained residual variation (trait1:
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C; trait2: C). Poor type I error control occurs when the esti-

mate of the standard error of b5 is smaller than the true stan-

dard error. For cases both with phylogenetic signal in trait 1

(trait1:C; trait2:C) andwithout (trait1: I; trait2:C), we plotted

the estimate of the standard error of b5 for each simulated

dataset against the estimate of b5 using both LMM and

PLMM (Fig. 4). For the case (trait1: I; trait2: C), the decrease

in accuracy of LMM relative to PLMM is seen in the greater

variance in the estimates of b5 (variance in the horizontal direc-
tion). Despite this increase in the variance in the estimates of

b5, false positives (given by values to the right of the dashed line
of Fig. 4) from the LMM are only slightly inflated because the

LMM estimates of the standard error of b5 are larger than

those from PLMM.However, for the case (trait1:C; trait2:C),

the decrease in accuracy of LMM relative to PLMM is not

accompanied by an appropriate increase in the LMM esti-

mates of the standard error, thereby leading to high type I

error rates. In contrast to LMM, even though the variance in

the estimates of b5 from PLMM increases when there is phylo-

genetic signal in trait1 (Fig. 4a vs. b), the estimates of the stan-

dard error also increase, leading to much better type I error

control than LMM. In summary, when there is phylogenetic

signal in trait1 (trait1: C; trait2: C), the poor type I error con-

trol for LMMoccurs due to two factors: (i) phylogenetic signal

increases the variance in the estimates of b5 (Fig. 4 right panel
x-axis), but (ii) the computed standard errors do no show a

corresponding increase (Fig. 4 right panel y-axis). In other

words, the variance of the estimates increases but the estimates

of their variance do not. The decrease in power of LMM

relative to PLMM for the case without phylogenetic signal in

trait1 (trait1: I; trait2: C) is caused by the increase in variance

in the estimator of b5, that is, decreased accuracy. Given the

very poor type I error control for LMM for the case with phy-

logenetic signal in trait1 (trait1:C; trait2:C), it is inappropriate

to assess power for this case.

Discussion

Our simulations have demonstrated the importance of incor-

porating phylogeny into the study of how species functional

traits interact with the environment to affect their abundances.

In simulations in which there was phylogenetic signal in the

residual variation in abundances caused by an unmeasured (la-

tent) trait, we showed that LMMs have lower accuracy, poor

type I error control and lower power than PLMMs in identify-

ing the trait 9 environment interaction. The performance of

LMMs was particularly poor in terms of type I error control

and power when there was also phylogenetic signal in the mea-

sured trait. In contrast, PLMMs had better accuracy, generally

good type I error control (except when the number of species

was small) and good power. The message here will also likely

apply to other types of correlated data (e.g. spatial or temporal

auto-correlated data). This is because, in principle, spatial and

temporal correlations can be handled bymixedmodels in simi-

lar ways as phylogenetic correlations are handled here (Ives &

Zhu 2006). Therefore, ignoring spatial and/or temporal corre-

lations may also inflate type I errors and reduce statistical

power.
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Fig. 1. The fraction of simulations in which phylogenetic linear mixed models (PLMM) yielded a better estimate of b5 (i.e. closer to its true value)

than linearmixedmodels (LMM) vs. (a) the number of simulated species and (b) the true value ofb5 (eqn 1). The performance of PLMMwas consis-

tently better than LMM whenever there was phylogenetic signal in the residual variation (caused by unmeasured trait2). Abbreviations: trait1: I –
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Our results mirror the results of Revell (2010) who studied

the performance of LMs and PLMs applied to regression for

phylogenetic comparative data. The model he considered that

most closely corresponds to our PLMM is a phylogenetic

least-squares model in which Pagel’s k branch-length trans-

form is used. Pagel’s k transformation can be constructed by

adding a phylogenetic and a non-phylogenetic covariance

matrix with k scaling between them (i.e. (1 � k)I + kC). In
our PLMM (eqn 3), covariance terms are similarly combined;

for example, the covariance for species-specific slopes across

environmental variable 1 is r2
cIn + r2

cpC. Revell (2010) found

that PLMs outperformed LMs when there was phylogenetic

signal in the residual variation, with the performance of LMs

particularly poor when there was also phylogenetic signal in

the independent variable. Thus, we found similar results in the

more complex problem of identifying trait 9 environment

interactions in community data.

The better performance of PLMMs over LMMs is not sur-

prising on theoretical grounds. For the special, hypothetical

case in which the variance parameters r2
a, r

2
ap, r

2
b, r

2
c and r2

cp

are known, the PLMM in eqn (3) will be the minimum vari-

ance estimator of the regression coefficients (fixed effects),

including the trait 9 environment interaction b5; this is a con-
sequence of the Cramer-Rao Theorem applied to generalized

least-squares (GLS) models (Judge et al. 1985). This explains

why PLMMs provide more accurate estimates of b5 than

LMMs, and the increase in accuracy explains the increase in

power of PLMMs relative to LMMs.

A particular warning derived from our simulations is the

poor type I error control for LMMswhen there is phylogenetic

signal in both the residual variation and in the independent

variable. When there is also phylogenetic signal in the mea-

sured trait1, the variance in the estimates of b5 greatly

increases. Nonetheless, the LMM estimates of the standard
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Fig. 2. Mean (�standard deviation) of simulated estimates of b5 (eqn 1) using linear mixed models (LMM) and phylogenetic linear mixed models

(PLMM) vs. the number of species in the simulations for cases (a) trait1: I; trait2: I, (b) trait1: C; trait2: I, (c) trait1: I; trait2: C, and (d) trait1: C;

trait2:C. Horizontal dashed lines represent the true value of the parameter. Abbreviations are as in Fig. 1.
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error of b5 do not increase as they should, leading to false rejec-
tions of the null hypothesis that b5 = 0. Because PLMMs are

close to theminimum variance estimators of b5, the variance in
its estimates of b5 does not increase as much as LMMs when

there is phylogenetic signal in the independent variable, and

what increase occurs is correctly given by the estimates stan-

dard errors of b5; thus, there is generally good type I error con-

trol.

When the number of species is small (<60), however, PLMM

had inflated type I error rates; for simulations with 20 species

and phylogenetic signal in both independent variable (mea-

sured trait1) and residual variation (unmeasured trait2), the

null hypothesis H0: b5 = 0 was rejected in 10% of the datasets

at the a significance level of 0�05. In analyses with small num-

bers of species and P-values computed from the data that are

close to the significance level selected by the researcher, we sug-

gest using parametric bootstrapping. This can be performed by

estimating parameters from the data under H0: b5 = 0 (i.e.

without the trait 9 environment interaction), simulating a

large number (e.g. 2000) datasets with these parameter values,

fitting each dataset with the full model (i.e. with the trait 9

environment interaction) and for each dataset recording the

Z-score of the estimate of b5. The bootstrap approximate

P-value of b5 under an a significance level of 0�05 is then given

by the proportion of bootstrapZ-scores whose absolute values

exceed the absolute value of the Z-score from the observed

data. Code for performing this bootstrap is provided in the

online data repository.

Our analyses have been confined to abundance as a continu-

ous dependent variable. Presence or absence (incidence) com-

munity data can also be analysed with phylogenetic

information using PGLMM (Ives &Helmus 2011), and results

will likely be similar. We did not pursue this here, however,

because the computational burden of PGLMMs with existing
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Fig. 3. (a) Type I error rates and (b) statistical

power of linear mixed models (LMMs) and

phylogenetic linear mixed models (PLMMs)

under four scenarios of simulated functional

traits (abbreviations as in Fig. 1). For all tests,

a significance level of a = 0�05 is used (hori-

zontal dashed lines).

© 2017 The Authors. Methods in Ecology and Evolution © 2017 British Ecological Society, Methods in Ecology and Evolution, 8, 1192–1199

Trait–environment phylogenetic mixed models 1197



software makes simulation studies difficult. Nonetheless, if

tests of the existence of relationships (i.e. testing H0: b5 = 0)

are all that is needed, applying PLMMs to binary data gener-

ally provides good type I error control, although at the expense

of some power (Ives 2015; Warton et al. 2016). We should

note, however, that interpreting coefficients for interactions in

GLMMs can be problematic when the link functions are

nonlinear.

Even when there was no phylogenetic signal in the residual

variation, PLMMs performed as well as LMMs. In part, this is

because, when PLMMs detected no phylogenetic signal in the

residual variation, they give the same results as the correspond-

ing LMMs (although their AIC values are still penalized by the

variance term that equals zero). The fact that PLMMs often

collapse exactly to LMMs as a special case suggests that

PLMMs should be always used in analyses of trait 9 environ-

ment interactions, as there is no cost in the absence of phyloge-

netic signal and considerable benefits when there is (which is

likely).
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