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A B S T R A C T   

Global change analyses are facilitated by the growing number of remote-sensing datasets that have both broad 
spatial extent and repeated observations over decades. These datasets provide unprecedented power to detect 
patterns of time trends involving information from all pixels on a map. However, rigorously testing for time 
trends requires a solid statistical foundation to identify underlying patterns and test hypotheses. Appropriate 
statistical analyses are challenging because environmental data often have temporal and spatial autocorrelation, 
which can either obscure underlying patterns in the data or suggest false associations between patterns in the 
data and independent values used to explain them. Existing statistical methods that account for temporal and 
spatial autocorrelation are not practical for remote-sensing datasets that often contain millions of pixels. Here, 
we first analyze simulated data to show the need to account for both spatial and temporal autocorrelation in 
time-trend analyses. Second, we present a new statistical approach, PARTS (Partitioned Autoregressive Time 
Series), to identify underlying patterns and test hypotheses about time trends using all pixels in large remote- 
sensing datasets. PARTS is flexible and can include, for example, the effects of multiple independent vari-
ables, such as land-cover or latitude, on time trends. Third, we use PARTS to analyze global trends in NDVI, 
focusing on trends in pixels that have not experienced land-cover change. We found that despite the appearance 
of overall increases in NDVI in all continents, there is little statistical support for these trends except for Asia and 
Europe, and only in some land-cover classes. Furthermore, we found no overall latitudinal trend in greening for 
any continent, but some latitude by land-cover class interactions, implying that latitudinal patterns differed 
among land-cover classes. PARTS makes it possible to identify patterns and test hypotheses that involve the 
aggregate information from many pixels on a map, thereby increasing the value of existing remote-sensing 
datasets.   

1. Introduction 

The global environment is changing rapidly but not uniformly, and 
many trends differ spatially in their magnitude, intensity, and speed 
(Huang et al., 2017; Zhu et al., 2016). Remote-sensing time series make 
it possible to monitor trends thanks to long-term datasets of consistent 
observations of the Earth’s surface. For example, the longest-running 
satellite program, Landsat, started in 1972 (Zhu et al., 2019), and the 
Advanced Very High Resolution Radiometer program started in 1978 
(Tucker et al., 2005). These programs now contain nearly five decades of 

data, providing time series that are long enough to identify trends and to 
distinguish them from short-term fluctuations (de Beurs and Henebry, 
2005). For example, many parts of the globe have exhibited a greening 
trend since the 1980s (Piao et al., 2019; Zhu et al., 2016) (Fig. 1). This 
greening trend appears to be most pronounced in northern high lati-
tudes, as has been identified by both remote sensing (Myneni et al., 
1997; Piao et al., 2011) and assessments of shrub cover (Ackerman et al., 
2017; Fraser et al., 2014; Tape et al., 2006). However, greening trends in 
North America differ from Eurasia (Bi et al., 2013; Xu et al., 2013; Zhou 
et al., 2001), and there is considerable variation in shrubland expansion 

* Corresponding author. 
E-mail address: arives@wisc.edu (A.R. Ives).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2021.112678 
Received 1 February 2021; Received in revised form 1 August 2021; Accepted 23 August 2021   



Remote Sensing of Environment 266 (2021) 112678

2

and contraction at regional and local scales (Chen et al., 2021; Tape 
et al., 2012). Furthermore, strong greening trends in China and India are 
most likely due to afforestation and agricultural intensification (Chen 
et al., 2019), and in the arid Sahel region greening is most likely due to 
increasing precipitation (Dardel et al., 2014). In summary, there is a 
need to identify where the environment is changing, how much it is 
changing, and why. 

When rigorously analyzing any time series of satellite data, it is 
useful to fit a statistical model. A statistical model makes it possible to 
identify and test explicit patterns in the data. A pattern of interest might 
be, for example, whether greening as measured by NDVI has been 
greater in the Arctic than at lower latitudes in the Northern Hemisphere, 
which appears to be the case most visibly in Alaska, parts of Canada, and 
parts of Siberia (Fig. 1a). While this pattern sounds simple, a statistical 
model reveals the true underlying complications. For example, can 
trends measured in adjacent pixels be treated as independent data 
points? The answer is clearly no, because adjacent points are likely to be 
affected by the same environmental fluctuations. But if adjacent points 
are not independent, is it impossible to include them together in a sta-
tistical test? If points have to be picked at distances far enough apart that 

they are independent, how far is “far enough,” how many points might 
be left to be analyzed, and how much information is lost? While there 
are numerous statistical approaches for fitting statistical models for non- 
independent data (Cressie et al., 2015; Cressie and Kang, 2016; Cressie 
and Zammit-Mangion, 2016; Cressie, 1993; Finley et al., 2009; Harvey, 
1993; Kang and Cressie, 2011, 2013; Tsay, 2014; Wikle et al., 2019), 
these methods are numerically intensive and struggle to scale up to the 
size of even coarse-resolution remote-sensing datasets. 

Although a common approach when studying patterns in space and 
time is to analyze pixels individually (pixel-scale), researchers are 
generally interested in the underlying patterns that span many pixels on 
a map (map-scale). Analyzing map-scale patterns involves two statistical 
steps. The first step is estimation, in which a statistical model is built 
containing parameters that quantitatively describe the pattern of inter-
est, and the data are used to estimate the values of these parameters. To 
make the estimates of the parameters informative about the patterns of 
real interest, the model must often include additional parameters to 
absorb those patterns that are not of immediate interest but might 
deceptively look like the patterns of real interest. As a specific example, 
suppose we are interested in whether increases in greenness differ 

Fig. 1. Global patterns of trends in annual cumulative NDVI from 1982 to 2015 from NDVI3g data. (a) Estimates of time trends from regression with autocorrelated 
errors (AR, Eq. (2)) including only pixels for which there was no change in land-cover class (not categorized as “unstable” as depicted in panel c). The time trends are 
measured by fitting an autoregressive time-series model (2.2.2 Regression with temporally autocorrelated errors) to data from each pixel and dividing the trend co-
efficient by the pixel mean to give the relative change in NDVI. For clarity, pixels for which the null hypothesis of no trend was rejected (at the 0.05 significance level) 
in the pixel-level time series are shown in brown and green corresponding to decreasing and increasing trends, respectively. Pixels for which the null hypothesis was 
not rejected are shown in gray, and pixels that were unvegetated or had changes in land-cover class are shown in white (2.4 Application to global NDVI data). (b) 
Global pattern of the mean annual cumulative NDVI for the period 1982–2015. For the Northern Hemisphere, the annual cumulative NDVI was calculated from 8-day 
NDVIs from January to December of a given year. For the Southern Hemisphere, the cumulative NDVI was computed from July to December of the previous year and 
from January to June of the current year. Pixels with mean annual NDVI values less than 0 were set to zero. (c) Global pattern of land-cover classes from 2001 to 
2015. This map is derived from the MODIS land-cover product (MCD12Q1 V006), which provides global land cover annually at 500-m spatial resolution (2.4 
Application to global NDVI data). The stable land-cover class is defined as the land-cover class of a pixel that did not change from 2001 to 2015. We upscaled MODIS 
land-cover pixels with majority rule to match NDVI3g NDVI pixels. A mixed pixel has no land-cover representing more than 50% of the pixel. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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among land-cover classes. Map-scale patterns in global NDVI (Fig. 1a) 
could reflect differences among land-cover classes (Fig. 1c), but also 
differences in regional temperature and precipitation. A statistical 
model could contain both parameters for land-cover classes and pa-
rameters that absorb regional variation in climate to statistically quan-
tify the effects of land-cover class on changes in NDVI while factoring 
out the possible effects of regional climate variation. 

The second statistical step is hypothesis testing, in which the esti-
mate of a parameter is assessed against the probability of obtaining an 
estimate more extreme under a null hypothesis. A null hypothesis could 
be simple, such as whether a parameter equals zero. More-complex null 
hypotheses can be formulated to address other types of questions. For 
example, whether greening in NDVI differs among land-cover classes 
could be tested with the null hypothesis that the parameters summari-
zing land-class-specific greening did not differ. For another example, a 
null hypothesis could be that latitudinal increases in greening are the 
same for all land-cover classes. A hypothesis test produces a P-value for 
the map-scale pattern in question, rather than P-values for time trends 
within individual pixels. The map-scale P-value does not indicate the 
magnitude of a map-scale pattern; the magnitude is given by the point or 
interval estimates of the parameter. Nonetheless, P-values are related to 
the uncertainty in the parameter estimate, and they give a rigorous and 
general way to determine the strength of evidence that can be placed on 
conclusions about patterns in the data. We caution, however, against 
using P-values to determine whether a pattern is significant or not based 
on a threshold such as “P < 0.05” (Benjamin et al., 2018; Wasserstein 
et al., 2019); instead, P-values give the probability of observing some-
thing more extreme than the estimated value of a parameter in a sta-
tistical model under a specified null hypothesis, and this full context of 
what a P-value is should be considered. 

Although the concepts of statistical estimation and hypothesis testing 
are familiar, there is no simple way of implementing estimation and 
hypothesis testing for large spatiotemporal datasets due to the statistical 
challenges of temporal and spatial autocorrelation. Temporal autocor-
relation occurs when values of a variable between consecutive time steps 
are not statistically independent. In natural ecosystems, temporal 
autocorrelation is common, both within years and among years, because 
organisms need time to grow and sometimes to die. For example, a 
drought may cause years of browning followed by years of greening after 
the drought ends (de Beurs et al., 2015; Wessels et al., 2012). When 
testing the hypothesis that there are long-term trends in NDVI, however, 
the changes caused by a single drought event should be considered as 
stochastic, because the single event might not predict the long-term 
change in NDVI. Many of the approaches that are commonly used to 
test for statistical significance in satellite datasets do not account 
adequately for temporal autocorrelation, despite acknowledgments that 
temporal autocorrelation is a problem (Udelhoven, 2011; Zhou et al., 
2001). Approaches that do not account fully for temporal autocorrela-
tion, as we will show in our simulations, include least-squares regression 
(Dardel et al., 2014; Ju and Masek, 2016; Myneni et al., 1997; Piao et al., 
2015) and the Mann-Kendall test with the Theil-Sen slope estimator 
(Fensholt et al., 2015; Fensholt and Proud, 2012; Zhu et al., 2016). Valid 
statistical tests that have been used in remote sensing include a modified 
seasonal Kendall test that accounts for temporal autocorrelation be-
tween seasons within a given year (but not for autocorrelation among 
years) (de Beurs et al., 2015; Hirsch and Slack, 1984) and the size-robust 
trend test (Bi et al., 2013; Fomby and Vogelsang, 2002; Vogelsang, 1998; 
Xu et al., 2013), which we will also discuss. 

Spatial autocorrelation presents an even greater statistical challenge 
than temporal autocorrelation. Spatial autocorrelation occurs when 
pixels exhibit non-independent patterns, such as when time series in 
nearby pixels show similar (or predictably dissimilar) fluctuations. For 
example, multiple pixels in the same region may experience the same 
drought and show similar patterns of browning and subsequent 
greening. When this occurs, pixels are not independent. Given that 
satellite datasets typically contain millions of pixels, treating them as 

independent would lead almost any statistical test to be “significant” 
(Wikle et al., 2019), a concern that has been raised in the remote-sensing 
literature (de Beurs et al., 2015; Tomaszewska et al., 2020; Zhou et al., 
2001). There are statistical methods for adjusting the significance level 
of pixel-scale statistical tests of time trends (Cortés et al., 2020; Cortés 
et al., 2021; Wilks, 2006, 2016); nonetheless, these are not frequently 
used, and although they give pixel-scale P-values corrected for spatial 
autocorrelation, they do not lead to map-scale statistical tests that 
aggregate the power from all pixels on a map. 

Here, we develop and evaluate a new statistical approach, PARTS 
(Partitioned Autoregressive Time-Series) analysis, that makes it possible 
to test map-scale hypotheses about patterns of temporal trends from all 
pixels in large remote-sensing datasets. Our objectives are: 

(i) to highlight the need to account for temporal and spatial auto-
correlation using simulations for which the underlying processes 
are known. Using simulations makes it possible to assess the 
output of statistical models when we know the true (simulated) 
patterns.  

(ii) to explain the statistical approach underlying PARTS. We validate 
the statistical approach using simulations presented here and in 
Ives et al. (2021).  

(iii) to use PARTS to estimate parameter values and test hypotheses 
about global greening trends from 1982 to 2015 based on mean 
annual values of NDVI at 8-km resolution. These analyses focus 
on changes in greening that are not associated with land-cover 
changes by excluding pixels in which land cover has been un-
stable (Fig. 1c). 

2. Methods 

2.1. Simulation model 

To understand how temporal and spatial autocorrelation can affect 
analyses of time trends, we designed simulations to generate realistic but 
simple datasets with varying strengths of both types of autocorrelation. 
The simulation model is  

xi(t) = ai + cit+ εi(t)

εi(t) = βiεi(t–1)+ δi(t) (1)  

where xi(t) is the value of interest (e.g., NDVI) in pixel (location) i in year 
t, ai is the intercept, and ci is a coefficient that measures the effect of time 
t on xi(t), where t = 1, 2, …, T. Environmental variation that affects 
changes in xi(t) from one year to the next is given by the random variable 
εi(t). To account for possible temporal autocorrelation, εi(t) is governed 
by a Gaussian (i.e., normal) autoregressive process generated from the 
normal random variable δi(t) that has mean zero and variance σ2, with 
values independent through time so that E[δi(t)δi(s)] = 0 for s ∕= t. The 
dependence of εi(t) on βiεi(t–1) generates temporal autocorrelation. If βi 
= 0, then εi(t) and εi(t–1) are not correlated, and the random fluctuations 
in xi(t) are independent from one year to the next. In many cases, 
however, we would expect random fluctuations to be positively corre-
lated through time (βi > 0), and negative autocorrelation (βi < 0) is also 
possible. 

To include spatial autocorrelation, we assume that the normal 
random variables δi(t) and δj(t) from pixels i and j are correlated such 
that cor[δi(t), δj(t)] = exp(−dij/r), where dij is the geographic distance 
between pixels and r is the “range” parameter. Values of δi(t) and δj(s) 
are independent when s ∕= t. The larger r, the greater the distance at 
which pixels share environmental fluctuations and hence the greater the 
spatial autocorrelation. For simulations, we scale distances so that the 
maximum distance between pixels on a map equals 1. Therefore, a value 
of r = 0.1 implies that the range is 10% of the extent of the map. With r 
= 0.1, the correlation between δi(t) and δj(t) for sites i and j that are 
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separated by a distance of 0.1 is exp(−1) = 0.37. Spatial autocorrelation 
in δi(t) imparts spatial autocorrelation to the random variable εi(t) and 
hence to xi(t). 

The time trend of interest is given by the parameter ci. If ci > 0, then 
there is a positive time trend in which the expectation of xi(t) increases 
linearly through time. The time trend is deterministic, rather than sto-
chastic, because it represents a fixed change in the expected value of 
xi(t). 

2.2. Time-series analyses 

2.2.1. Least-squares linear regression, Mann–Kendall, and size-robust trend 
tests 

In the remote-sensing literature, three methods are commonly used 
to fit pixel-level time series. The most common is least-squares linear 
regression (LS) in which xi(t) is regressed on t (e.g., Fensholt and Proud, 
2012; Myneni et al., 1997; Piao et al., 2011). This method ignores the 
potential for temporal autocorrelation (βi ∕= 0). A commonly used 
alternative is a Mann-Kendall nonparametric significance test (MK) 
combined with the nonparametric Theil-Sen slope estimator (Fensholt 
et al., 2015; Zhu et al., 2016). The MK test can also be modified to ac-
count for seasonal effects for time series with multiple values per year: 
the seasonal effect is removed by comparing values from the same sea-
sons among years (de Beurs and Henebry, 2005; de Beurs et al., 2015). 
While this method accounts for temporal autocorrelation between 
consecutive seasons, the data we analyze are annualized (Fig. 1a), and 
therefore we applied the standard MK test that does not account for 
temporal autocorrelation. Finally, we used the size-robust trend test (SR) 
(Fomby and Vogelsang, 2002; Vogelsang, 1998), which has been used 
with remote-sensing data (Bi et al., 2013; Xu et al., 2013). The SR test 
correctly accounts for temporal autocorrelation, although at the expense 
of statistical power. Also, while the SR test determines whether or not a 
trend is statistically significant at a given significance level (e.g., P <
0.05), it does not give an exact P-value (e.g., P = 0.023) like LS and MK 
tests. 

2.2.2. Regression with temporally autocorrelated errors 
To account for temporal autocorrelation, we fit pixel-level time se-

ries using the model 

xi(t) = ai + cit+ εi(t) (2)  

Here, εi(t) is a univariate stationary first-order Gaussian autoregressive 
(AR) process with mean zero for each separate time series, and the 
vector of values of εi(t) (t = 1, 2, …, T) has a multivariate Gaussian 
distribution, N(0, σ2Σi). The correlation matrix Σi contains the elements 
cor[εi(t), εi(s)] = βi|t–s| for all t and s. This regression model with lag-1 
autoregressive error terms for a single pixel is commonly fit using 
Maximum Likelihood (ML) (Box et al., 1994). However, ML gives biased 
estimates of ci (results not shown), and therefore instead we use 
Restricted Maximum Likelihood (REML) (Ives et al., 2010). We refer to 
this method as AR (autoregression). 

2.2.3. Simulations of pixel-level time series 
To evaluate the performance of each method of time-series analysis, 

we simulated 5000 datasets for each combination of ci = 0, 0.5, 1, 2 and 
βi = 0, 0.2, 0.4, 0.6 for 30 years, with ai = 0 (Eq. (1)). We applied all 
competing methods (LS, MK, SR, AR) to assess their type I error rates for 
the case when ci = 0. The type I error rates are given by the proportion of 
simulations for which the null hypothesis is rejected given that it is true. 
Thus, for datasets simulated under the null hypothesis, a correct statis-
tical test should reject the null hypothesis in 5% of the simulations when 
using a significance level of alpha = 0.05. If the null hypothesis is 
rejected in a fraction greater than 0.05, then the type I error rates are 
inflated, which corresponds to the P-values given by the hypothesis test 
being too low. We assessed the statistical power of the four methods 

when ci = 0.5, 1, and 2 as their ability to reject the null hypothesis that ci 
= 0. To test the methods when there are disturbance events (drought, 
fire, logging, etc.), we ran simulations in which xi(t) was decreased by 2 
at either year 5 or year 20. These disturbance datasets were otherwise 
identical to the other simulations. 

2.3. PARTS 

2.3.1. Statistical summary 
Current statistical methods for spatiotemporal data generally 

evolved from spatial analyses, especially kriging (Krainski et al., 2019; 
Wikle et al., 2019). For example, Cressie and Kang (2010) and Kang and 
Cressie (2011) extend classical kriging to a Spatiotemporal Random 
Effects (STRE) model to interpolate and forecast temporal trends in data. 
Similar models have also been formulated for Bayesian analyses (Ber-
rocal et al., 2010), and both frequentist and Bayesian spatiotemporal 
models emphasizing kriging have been applied to large spatial datasets 
(Cressie and Kang, 2010; Katzfuss and Cressie, 2011; Zammit-Mangion 
and Cressie, 2018). There are parallel efforts to fill gaps in weather 
station data (Finley et al., 2012) and to reduce noise and fill clouds with 
a spatiotemporal Savitsky-Golay filter (Cao et al., 2018). 

PARTS takes a different approach by analyzing the time series of 
each pixel separately to give estimates of parameters quantifying time 
trends, and then using Generalized Least Squares (GLS) regression (Ives 
and Zhu, 2006; Judge et al., 1985) to analyze the spatial distribution of 
the parameter estimates. Thus, PARTS collapses the temporal dimension 
of the data into parameter estimates and then performs the spatial 
analysis on the parameter estimates. To computationally handle large 
maps, PARTS analyzes random partitions of the data separately and then 
combines the analyses from all partitions in a way that accounts for the 
data from different partitions being non-independent. There are at least 
four advantages of this overall approach. First, it makes the task of 
analyzing maps of millions of pixels feasible. While we do not know of 
any examples of analyses with maps containing more than one million 
pixels using existing statistical spatiotemporal methods (e.g., Wikle 
et al., 2019), PARTs can fit a model such as we present here (3.2 Global 
trends in browning and greening) for time trends across 30 years on a 
1,000,000-pixel map using 8 cores at 2.79 GHz (CPU: AMD Ryzen 
73,700× with a AMD X570 chipset; memory: dual channel DDR4 at 
1800 MHz) in less than 30 min, and the computational burden scales 
linearly with increasing numbers of pixels for a given partition size. 
Second, the first step of analyzing individual time series using a variety 
of time-series models is already standard in the remote-sensing litera-
ture, and PARTS can be viewed as an extension of these methods. Third, 
because it is based on GLS, PARTS lends itself to standard hypothesis 
tests that are familiar in regression-style analyses, including analysis of 
variance (ANOVA) and analysis of covariance (ANCOVA). Fourth, 
PARTS requires fewer assumptions about the structure of the data than 
other spatiotemporal methods (e.g., Wikle et al., 2019) because it col-
lapses the temporal dimension into a single variable. For example, a full 
spatiotemporal model would require specifying and estimating differ-
ences in the mean values (intercepts) of a response variable among 
pixels along with the time trends when fitting the entire dataset. In 
contrast, PARTS uses only the estimates of the pixel-scale time trends in 
the spatial analysis. Therefore, in PARTS there is no need to specify in 
the model how the intercept varies among pixels if the goal is to analyze 
time trends. 

2.3.2. Statistical procedure 
The PARTS procedure is:  

1. Perform AR regression for the time series in each pixel to give pixel- 
specific estimates of the time trends, ci.  

2. Calculate the correlations between the residuals obtained from the 
fitted AR regression models for each pair of pixels, or each pair in a 
large subset of pixels. These correlations are then used to estimate 
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the spatial autocorrelation structure of the estimates of ci (Ives et al., 
2021).  

3. Using the spatial autocorrelation structure from step 2, perform GLS 
of a spatial regression of the estimates of ci against independent 
variables to give estimates of parameters and test hypotheses about 
map-scale patterns of time trends. It is also possible to estimate 
spatial autocorrelation in this step and skip step 2.  

4. Steps 1–3 can be performed on maps of up to roughly 30,000 pixels. 
To analyze larger maps, analyses are performed by partitioning all 
pixels into subsets, analyzing each partition using step 3, and then 
combining the results for the partitions into an overall statistical test. 

Steps 2–4 can be applied to any parameter estimated from time-series 
analyses of each pixel, not just ci. Several points need to be explained 
in more detail. 

First, for an overall model like that given by Eq. (1), the estimates of 
ci are not independent among pixels due to spatial autocorrelation. 
Therefore, the “best” estimates of ci (technically, the best linear unbiased 
estimate, BLUE, Judge et al., 1985) require estimating the values of ci for 
all pixels simultaneously, and this would entail a large computational 
burden. The AR estimates of ci given by ĉi are computed for each pixel 
separately and therefore they are not the BLUE estimates of ci. None-
theless, they are unbiased and in practice are numerically close to the 
BLUE estimates. 

Second, we use GLS to regress values of the estimates ĉi against in-
dependent variables wi1, wi2, …, wip for p independent variables, 

ĉi = b0 + b1wi1 +…+ bpwip + γi. (3)  

GLS explicitly incorporates the spatial correlation matrix to account for 
the correlations between ĉi and ĉj by assuming the N spatial errors γi 
follow a multivariate Gaussian distribution with correlation matrix V, N 
(0, σ2

γV). We assume that the correlation between γi and γj, cor[γi, γj], 
decays according to some function v(dij) of the distance dij between 
pixels i and j. For example, in the simulation model (Eq. (1)), v(dij) = exp 
(−dij/r). For fitting the NDVI data (Fig. 1a), we use the more-general 
exponential-power function v(dij) = exp(−(dij/r)g). The second param-
eter g controls the shape of decline with distance; when g = 2, v(dij) is 
Gaussian; when g = 1, v(dij) is exponential; and values of g < 1 imply 
more leptokurtic functions. 

Third, we also assume that there is a “nugget effect” that represents 
the proportion of local variation in γi that is not spatially autocorrelated. 
Specifically, we let V = (1 – nugget) v(D) + nugget I, where D is the N × N 
distance matrix between all N pixels (i.e., D has elements dij), and I is the 
identity matrix. The nugget is estimated by maximum likelihood during 
step 3 of PARTS. We estimate the nugget effect because measurement 
error of the individual time series will appear as local variation, and 
because there could be real (biological) variation in time trends at the 
local scale. The parameters in v(D) (e.g., r and g) can be estimated in step 
2, before the GLS is performed in step 3. This approach uses the result 
that cor[γi, γj] is roughly proportional to cor[εi(t), εj(t)], with the pro-
portionality exact when the strength of temporal autocorrelation is the 
same for all time series (βi = βj) (Ives et al., 2021). Independent esti-
mation of parameters in v(dij) using cor[εi(t), εj(t)] will speed compu-
tation time and can lead to better estimates of bk (k = 0, 1, …, p). The 
parameters in v(dij) giving the spatial autocorrelation (e.g., r and g) can 
alternatively be estimated simultaneously with the nugget in step 3 (Ives 
et al., 2021). We consider the effects of estimating r in step 3 when 
analyzing a real dataset (3.2.1 Alaska). 

Fourth, because the GLS performs statistical tests using the estimates 
of the coefficients ̂ci from the time-series analyses, it implicitly combines 
variation in trends among pixels from two sources: the variation in the 
estimates caused by temporal variation in the time series within pixels 
(spatiotemporal variation), and the variation in the underlying time 
trend among pixels (purely spatial variation). The relative magnitudes of 
these two sources of variation can be roughly obtained by comparing the 

standard errors of the estimates ̂ci (step 1) with the standard deviation of 
the random error in Eq. (3), σγ (step 3). If the standard errors of ĉi are 
small compared to σγ, then much of the spatial variation in ĉi is caused 
by fixed spatial differences in trends among pixels. Conversely, if stan-
dard errors of ĉi are large compared to σγ, then variation in ĉi can be 
attributed to uncertainty in their estimates that is caused by temporal 
fluctuations over the course of the time series. Comparing the standard 
errors of the estimates ĉi with σγ provides a way to assess the source of 
variation in the GLS analysis. 

Fifth, for maps with more than 30,000 pixels, hypothesis testing can 
be performed by partitioning the map into np subsets of pixels drawn 
randomly without replacement from throughout the map (step 4). The 
hypothesis is tested for each of the np partitions separately, and then the 
results from the np tests are combined to give a single test of the hy-
pothesis for the entire map. The hypothesis testing can be done with 
standard approaches: t-tests, F-tests, and Likelihood Ratio Tests (LRT). 
We present two methods for combining tests. The first method combines 
the np tests by selecting the partition with the strongest result (lowest P- 
value) and then correcting this P-value for the np multiple comparisons 
using either a Hochberg (1988) (Bonferroni) or False Discovery Rate 
(FDR) adjustment (Benjamini and Hochberg, 1995). Wilks (2006, 2016) 
applies this approach for tests of single pixels, while here we apply it to 
tests of partitions of pixels. For correcting the single lowest P-value, both 
Hochberg and FDR corrections are valid for non-independent tests 
(Nichols and Hayasaka, 2003); this is important, because the pixels from 
different partitions are not independent and hence the np tests are not 
independent. Nonetheless, the consequence of non-independence is loss 
of statistical power to reject the null hypothesis across the entire dataset. 
The second method for combining the np tests is detailed in Ives et al. 
(2021). It involves obtaining the statistical distribution of the test sta-
tistic when measured on the correlated partitions; this distribution of the 
test statistic then gives an omnibus test for the hypothesis for the entire 
map. We use partition versions of t-tests for individual parameters and 
LRTs for hypotheses involving more than one parameter. We used both 
multiple comparison and partition methods, because the first is well- 
established in the literature, while the new, second method has 
greater statistical power (which we demonstrate with our simulations). 

2.3.3. Spatiotemporal patterns 
To illustrate the problem of spatial autocorrelation, we used Eq. (1) 

to simulate data on a 100 × 100 pixel map, with each pixel having a time 
series of length 30. We followed the common practice of showing only 
pixels that have statistically significant trends as determined by AR, 
using a significance level of alpha = 0.1 so that roughly 10% of pixels 
should be flagged as significant if the null hypothesis (no time trend) 
were true. 

2.4. Application to global NDVI data 

To illustrate PARTS, we analyzed trends in mean annual NDVI data 
globally. Mean annual cumulative NDVI is strongly correlated with 
vegetation productivity (Chen et al., 2014; Pettorelli et al., 2005) and a 
strong predictor of species richness (Hobi et al., 2017; Radeloff et al., 
2019). Trends in mean annual NDVI reflect the response of ecosystems 
to climate change and human activities such as grassland degradation, 
crop status, and forest management (Chen et al., 2019; Fensholt et al., 
2012; Wessels et al., 2012). We use the GIMMS3g dataset because it is 
one of the most widely used remote-sensing datasets for time-series and 
trend analyses. The dataset is processed to suppress multiple sources of 
“noise”, and using mean annual data in effect increases smoothing in 
time and space. This smoothing makes the temporal and spatial auto-
correlation more visible in the data. Although we illustrate our methods 
with the mean annual GIMMS3g dataset, the issues of spatial and tem-
poral autocorrelation also arise in other more “noisy” data. The “noise” 
in other datasets might decrease the visibility of temporal and spatial 
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autocorrelation, but it will also decrease the strength of evidence for 
possible patterns that a researcher might want to estimate and test: the 
noise relative to the signal will increase, but the signal will still contain 
temporal and spatial autocorrelation. Therefore, there is no less reason 
to use methods that account for temporal and spatial autocorrelation in 
“noisy” data. 

We generated mean annual NDVI values across the globe from 1982 
to 2015 using the NDVI3g dataset produced from Advanced Very High 
Resolution Radiometer (AVHRR) instruments. The NDVI3g data have 
been corrected to minimize the adverse effects of various factors such as 
sensor calibration loss, orbit drift, and volcanic eruption compared to 
previous AVHRR NDVI data (Pinzon and Tucker, 2014). The NDVI3g 
data are highly consistent with an earlier version of the comparable 
MODIS product (Collection 5) but span more years and have a longer 
history (Fensholt and Proud, 2012), which is why we analyzed NDVI3g 
instead of MODIS Collection 6 vegetation data (Heck et al., 2019; Zhang 
et al., 2017). NDVI3g has been widely used to investigate vegetation 
productivity and phenological change, and to map land cover (e.g., Chen 
et al., 2014; Fensholt and Proud, 2012; He et al., 2017). We acquired the 
raw NDVI3g dataset (version 1.0) from the NASA Ames Ecological 
Forecasting Lab (https://ecocast.arc.nasa.gov/data/pub/gimms/) 
which has a spatial resolution of 0.083 degree (~8 km) and a temporal 
interval of 15 days (two NDVI values per month). 

To calculate mean annual NDVI, we preprocessed the raw data to 
obtain both NDVI values and their quality flags. We then applied the 
quality flags to their corresponding NDVI values and used linear inter-
polation to predict the pixels with possible snow/cloud cover (flag = 3). 
We calculated the annual NDVI as the sum of positive NDVI values over 
12 months (Hobi et al., 2017; Pettorelli et al., 2005; Radeloff et al., 
2019). For pixels in the Northern Hemisphere, the 12 months ran from 
January to December, while for pixels in the Southern Hemisphere, they 
ran from July to June of the next year (Fig. 1b). 

For our trend analyses, we excluded non-vegetated areas and areas 
with unstable land-cover classes, thereby excluding changes in NDVI 
caused by changes in land-cover class. Land-cover class was determined 
using the MODIS land-cover product (MCD12Q1 V006), which gives 
global maps of land cover at annual time steps and 500-m resolution for 
2001–2019 (Friedl et al., 2002; Sulla-Menashe et al., 2019). We first 
determined whether land-cover change was stable at the 500-m pixel 
scale, classifying pixels as unstable if its land-cover class changed be-
tween 2001 and 2015. Then, to match the spatial resolution of NDVI3g 
data, we used the majority method to determine the land-cover class of 
the coarser NDVI3g data pixels. Specifically, a NDVI3g pixel was 
assigned to the dominant land-cover class of all finer MODIS pixels 
within it. If the dominant land-cover type was unstable, we removed the 
pixel from further analyses; for Africa, Asia, Australia, Europe, North 
America and South America, 9.6%, 8.8%, 9.0%, 6.0%, 7.0% and 8.5% of 
the NDVI3g pixels were so removed. If the percentage of the dominant 
land-cover class was less than 50%, the NDVI3g pixel was assigned to the 
mixed land-cover class (Fig. 1c); for Africa, Asia, Australia, Europe, 
North America and South America, 14.7%, 22.6%, 11.5%, 36.7%, and 
25.5% of the NDVI3g pixels were categorized as stable with mixed land- 
cover class. All analyses of land-cover dynamics (e.g., unstable or stable) 
were conducted on Google Earth Engine. 

We performed AR time-series analyses for each pixel, 1982–2015. To 
give estimates of ci relative to the mean cumulative NDVI over the time 
series, we divided ĉi by this mean and denoted the result crel (dropping 
the subscript i for clarity). An outlier test was used to identify pixels with 
very high or low values of crel: values were considered outliers if their 
probability was less than 0.1/N assuming a Gaussian distribution, where 
N is the number of pixels on the map. These typically occurred at 
boundaries, either between land and water, or between land and barren 
areas. At these boundaries, the mean annual NDVI was small, so crel was 
large. 

We first performed a detailed analysis of Alaska, USA, west of −141◦

longitude. We analyzed all stable land-cover classes that occurred in at 

least 0.5% of pixels, resulting in three land-cover classes. To analyze 
patterns in time trends among land-cover classes, we further limited 
analyses to pixels that contained at least 50% of a single land-cover 
class; this reduced the number of pixels from 29,089 to 20,694. For 
analyses that did not include land-cover classes, we used the same 
dataset so that results would be compatible with analyses including 
land-cover classes. We analyzed Alaska because its area is small enough 
that patterns are easily seen, yet large enough to present a statistical 
challenge. 

We then analyzed the global data separately for each continent. For 
analyses that did not include land-cover classes, we used pixels that 
included mixed land-cover classes. For analyses that included land-cover 
classes, we included only pixels that contained at least 50% of a single 
land-cover class. 

The software we used to analyze the data and simulations is available 
as the R package (R Core Team, 2021) called remotePARTS at https://gi 
thub.com/morrowcj/remotePARTS. 

3. Results 

3.1. Simulations 

Our simulations highlighted the effects of both temporal and spatial 
autocorrelation on trend analyses, and provided validation of PARTS for 
analyzing remote-sensing datasets. 

3.1.1. Temporal analyses 
Using simulated time series, we compared least-squares regression 

(LS), the Mann-Kendall/Theil-Sen method (MK), size-robust trend 
analysis (SR), and regression with autoregressive errors (AR). When 
simulations contained no temporal autocorrelation (βi = 0, Eq. (1)), all 
four methods gave acceptable type I error rates when there was no time 
trend (ci = 0); at a significance level of alpha = 0.05, roughly 5% of the 
5000 simulated datasets were identified as having significant trends 
(Table 1). However, when there was strong temporal autocorrelation (βi 
= 0.8), LS and MK rejected the null hypothesis that ci = 0 for roughly 
50% of the simulations. In contrast, SR showed no inflated type I error 

Table 1 
Proportion of simulated time series with 30 time points for which a trend was 
deemed statistically significant, depending on differing values of simulated 
trend ci and temporal autocorrelation βi.  

ci βi LS MK SR AR 

0 0.0 0.05 0.05 0.04 0.06 
0 0.2 0.10 0.10 0.03 0.07 
0 0.4 0.18 0.17 0.03 0.07 
0 0.6 0.30 0.28 0.03 0.09 
0 0.8 0.51 0.48 0.03 0.14 
0.5 0.0 0.12 0.11 0.08 0.13 
0.5 0.2 0.17 0.16 0.06 0.11 
0.5 0.4 0.24 0.22 0.04 0.11 
0.5 0.6 0.34 0.32 0.03 0.11 
0.5 0.8 0.51 0.48 0.03 0.15 
1.0 0.0 0.33 0.32 0.20 0.34 
1.0 0.2 0.36 0.33 0.12 0.25 
1.0 0.4 0.37 0.34 0.07 0.19 
1.0 0.6 0.44 0.41 0.05 0.17 
1.0 0.8 0.52 0.49 0.03 0.15 
2.0 0.0 0.87 0.84 0.60 0.84 
2.0 0.2 0.81 0.78 0.38 0.67 
2.0 0.4 0.75 0.72 0.21 0.48 
2.0 0.6 0.66 0.63 0.10 0.33 
2.0 0.8 0.62 0.58 0.05 0.22 

When ci = 0, 5% of the time series is expected to be rejected under the signifi-
cance level of alpha = 0.05. We applied least-squares regression (LS), a Mann- 
Kendall/Theil-Sen test (MK), the size-robust trend test (SR), and regression 
with autocorrelated errors (AR). For each combination of ci and βi, 5000 simu-
lations were performed. When ci = 0, estimates of ci were equally likely to be 
positive or negative, including those associated with values of P < 0.05. 
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rates, while the inflation for AR was much less than LS and MK. When 
the null hypothesis was false (ci = 0.5, 1, and 2) and there was no 
temporal autocorrelation (βi = 0), SR had reduced power to reject the 
null hypothesis compared to LS, MK, and AR. When there was temporal 
autocorrelation (βi > 0), AR had greater power than SR, although 
increasing temporal autocorrelation reduced the power for both 
methods (Table 1). Because the type I error rates of LS and MK were so 
inflated when there was temporal autocorrelation, it is inappropriate to 
assess their statistical power; they had high rejection rates even when 
the null hypothesis was true. 

The reason for the inflated type I error rates for LS and MK can be 
seen in graphs of time series from the simulations (Fig. 2). For an 
example with a temporal trend but no autocorrelation (ci = 2, βi = 0, 
Fig. 2a), LS, MK, and AR correctly identified the trend, while SR did not. 
In this case, the predictions from LS, MK, and AR for the future 20 years 
would be reliable. However, when there was no trend but strong auto-
correlation (ci = 0, βi = 0.9, Fig. 2b), LS and MK identified the auto-
correlation as a trend, even though the increase caused by the 
autocorrelation was transient and did not predict the following 20 years. 

From the same simulations, we also computed the mean and stan-
dard deviation of the estimates of the time trend ĉi (Table 2). While all 
methods gave approximately unbiased estimates, the standard deviation 

of the estimates increased with temporal autocorrelation (βi). AR had the 
most accurate estimates (i.e., almost no bias and low standard de-
viations), while SR had the least accurate estimates. 

Temporal shocks to the time series caused similar challenges for all 
methods. When negative shocks occurred early in the time series, all 
methods were likely to estimate a positive time trend, and shocks to-
wards the end of the time series led to frequent negative estimates 
(Table 3; Fig. 2c,d). Overall, however, type I error rates were no more 
inflated than for the case of only autocorrelation in the absence of shocks 
(compare Tables 1 and 3 for the same values of βi). 

To summarize, our simulations of time series show that temporal 
autocorrelation can “fool” statistical tests and cause inflated type I error 
rates. Inflated type I error rates are especially a problem for methods like 
LS and MK that do not account for temporal autocorrelation, but even 
AR had moderately inflated type I errors when temporal autocorrelation 
was high. Nonetheless, AR gave the most accurate estimates of the time 
trend, having both low bias and low standard errors (Table 2). 
Furthermore, it performed better than other methods when confronted 
with data containing “shocks” (Table 3). For the PARTS method, accu-
racy of the estimates is most important, because PARTS does not use the 
P-values calculated from pixel-level time series. For our simulations, the 
LS estimates are similar to the AR estimates in accuracy, although for 
shorter time series LS can perform noticeably worse. Furthermore, 
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(d)LS: P = 0.001
MK: P = 0.038
SR: P = ns
AR: P = 0.807

Fig. 2. Four example time series fit with least-squares regression (LS), a Mann-Kendall/Theil-analysis (MK), the size-robust trend test (SR), and regression with 
autocorrelated errors (AR). (a) When there was a time trend (ci = 2) and no temporal autocorrelation (βi = 0), all methods fit to the first 30 time points except SR 
correctly predicted the remaining 20 time points of the time series. (b) When there was no time trend (ci = 0) and temporal autocorrelation (βi = 0.9), LS and MK both 
incorrectly rejected the null hypothesis with high probability (low P-values) when fitted to the first 30 points and therefore incorrectly predicted the last 20 points, 
whereas SR and AR did not reject the null hypothesis at a significance level of alpha = 0.05. We also considered the case when there is no time trend and strong 
temporal autocorrelation (ci = 0, βi = 0.9), and an event at time 5 (c) and time 20 (d) decreased the value by 2. LS and MK identified strong positive (c) and negative 
(d) trends, whereas RS and AR identified no trends. Note that SR only reports whether P-values are below a threshold of 0.05. Parameters for the simulations were 
selected to give examples that visually illustrate the overall simulation results in Table 1. 
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because it is common practice to use P-values to visualize “strong” 
versus “weak” time trends on maps (as we have done in Fig. 1a), and 
because the computational burden of AR is not much greater than LS, we 
recommend AR. 

3.1.2. Spatiotemporal patterns 
Spatial autocorrelation generates visual patterns even when the 

patterns are random; in all three simulations in Fig. 3, there are no time 
trends. When there is no spatial autocorrelation (r = 0, Fig. 3a), the 10% 
of pixels with P-values <0.10 pepper the map. In contrast, when there is 
spatial autocorrelation (r = 0.1, Fig. 3b,c), the 10% of pixels with P- 
values <0.10 form clusters. The locations of these clusters are random, 
however, since different random simulations show different clustering 
patterns (Fig. 3b vs. Fig. 3c). The clusters are simply non-independent 
type I errors. The degree of spatial autocorrelation in this simulation 
(r = 0.1) is not unrealistic, being roughly the same as estimated for the 
Alaska dataset we analyze in detail (Section 3.2.1 Alaska). 

3.1.3. Simulation study of PARTS 
We used PARTS to test whether simulated land-cover classes had 

different time trends (Fig. 4). In the first simulation (Fig. 4a,b), there 
were no time trends in any land-cover class, while in the second simu-
lation (Fig. 4c,d) the time trends increased from land-cover class 1 to 4. 
The same seed for the random number generator was used for both 
simulations so that the spatial patterns are visually similar (Fig. 4a,c), 
making it easier to see the differences in time trends between 
simulations. 

A naive approach to analyzing these data is to perform an ANOVA on 
the estimated time trends ĉi to detect differences among land-cover 
classes. ANOVA falsely rejected the null hypothesis of no differences 
among land-cover classes in the first simulation (F3,9996 = 159.9, P <
10−15; Fig. 4b). ANOVA also gave the incorrect order of land-cover 
classes according to their time trends in the second simulation 
(Fig. 4d). Thus, the “standard” approach of analyzing pixels as if they 
were independent resulted in strong statistical support for patterns that 
do not exist in the simulated data (Fig. 4a) and missed the patterns that 
do exist (Fig. 4c). 

We also fit the simulated data with PARTS (steps 1–3). For the first 
simulation (Fig. 4a, b), PARTS correctly reported neither an overall time 
trend (t9999 =−0.12, P = 0.90) nor differences among land-cover classes 
(F3,9996 = 0.96, P = 0.41). The appropriate standard errors for co-
efficients estimated from data with spatial autocorrelation depend on 
the hypothesis being tested. The appropriate standard error for the hy-
pothesis that a coefficient is different from zero is the commonly used 
standard error (Fig. 4b, black error bars). However, when testing the 
hypothesis that coefficients are different from each other (i.e., land- 
cover classes have different trends), the appropriate standard errors 

Table 2 
From 5000 simulated time series with 30 time points, the mean (standard de-
viation) of the time trend estimate, ĉi, for different simulated values of trend ci 
and temporal autocorrelation βi.  

ci βi LS MK SR AR 

0 0.0 0.00 (0.63) 0.00 (0.66) 0.00 (0.72) 0.00 (0.63) 
0 0.2 0.01 (0.77) 0.02 (0.79) 0.02 (0.89) 0.01 (0.77) 
0 0.4 0.01 (0.99) 0.01 (1.01) 0.01 (1.14) 0.01 (1.00) 
0 0.6 0.03 (1.4) 0.03 (1.42) 0.04 (1.64) 0.02 (1.41) 
0 0.8 0.05 (2.45) 0.04 (2.49) 0.06 (2.83) 0.05 (2.32) 
0.5 0.0 0.50 (0.63) 0.50 (0.65) 0.52 (0.72) 0.50 (0.63) 
0.5 0.2 0.49 (0.78) 0.49 (0.8) 0.51 (0.89) 0.50 (0.78) 
0.5 0.4 0.48 (1.02) 0.48 (1.04) 0.50 (1.18) 0.48 (1.03) 
0.5 0.6 0.48 (1.41) 0.48 (1.44) 0.51 (1.63) 0.47 (1.42) 
0.5 0.8 0.49 (2.43) 0.50 (2.47) 0.50 (2.81) 0.49 (2.34) 
1.0 0.0 1.00 (0.63) 1.00 (0.66) 1.04 (0.72) 1.00 (0.64) 
1.0 0.2 0.98 (0.78) 0.99 (0.8) 1.01 (0.89) 0.99 (0.79) 
1.0 0.4 0.99 (1.00) 0.99 (1.02) 1.03 (1.15) 0.99 (1.00) 
1.0 0.6 1.03 (1.47) 1.02 (1.49) 1.07 (1.7) 1.03 (1.46) 
1.0 0.8 0.95 (2.37) 0.96 (2.41) 0.97 (2.77) 0.96 (2.25) 
2.0 0.0 2.02 (0.63) 2.01 (0.66) 2.09 (0.72) 2.02 (0.64) 
2.0 0.2 1.99 (0.77) 1.99 (0.79) 2.06 (0.88) 1.99 (0.78) 
2.0 0.4 1.99 (1.00) 2.00 (1.02) 2.07 (1.16) 1.99 (1.01) 
2.0 0.6 2.00 (1.42) 1.99 (1.44) 2.07 (1.66) 1.99 (1.42) 
2.0 0.8 1.93 (2.43) 1.93 (2.47) 1.98 (2.84) 1.96 (2.28) 

We applied least-squares regression (LS), a Mann-Kendall/Theil-Sen test (MK), 
the size-robust trend test (SR), and regression with autocorrelated errors (AR). 

Table 3 
Proportion of 5000 simulated time series with 30 points for which a trend was 
identified as statistically significant, depending on differing values of temporal 
autocorrelation βι and the year in which a shock event occurred that reduced the 
value of the variable by 2.  

Year of event βi LS MK SR AR 

5 0 0.06 (88%) 0.05 (82%) 0.05 (67%) 0.07 (85%) 
5 0.2 0.12 (87%) 0.11 (85%) 0.04 (68%) 0.08 (90%) 
5 0.4 0.21 (82%) 0.19 (80%) 0.04 (68%) 0.08 (83%) 
5 0.6 0.32 (80%) 0.30 (80%) 0.03 (69%) 0.09 (80%) 
5 0.8 0.50 (72%) 0.46 (71%) 0.03 (65%) 0.12 (68%) 
20 0 0.04 (32%) 0.05 (36%) 0.04 (35%) 0.05 (31%) 
20 0.2 0.09 (31%) 0.09 (34%) 0.03 (35%) 0.06 (33%) 
20 0.4 0.17 (29%) 0.16 (31%) 0.03 (35%) 0.06 (31%) 
20 0.6 0.31 (31%) 0.29 (32%) 0.03 (34%) 0.08 (28%) 
20 0.8 0.52 (27%) 0.49 (28%) 0.03 (32%) 0.13 (27%) 

The data were simulated without a time trend, and therefore a correct statistical 
test will reject the null hypothesis in 5% of the simulated datasets at the sig-
nificance level of alpha = 0.05. We applied least-squares regression (LS), a 
Mann-Kendall/Theil-Sen test (MK), the size-robust trend test (SR), and regres-
sion with autocorrelated errors (AR). Values in parentheses are the percentage of 
simulated datasets with P < 0.05 for which the estimate of ci was positive. 

Fig. 3. Random time series on a 100 × 100 pixel map fit using AR (a) when there was no spatial autocorrelation and (b, c) when there was spatial autocorrelation. (b) 
and (c) only differ in the random numbers drawn in the simulation. In all cases, AR identified 10% of the pixels as having statistically significant trends at the 
significance level of alpha = 0.1; these are shown as brown (negative trends) and green (positive trends) pixels. In (b) and (c), the range of the spatial autocorrelation 
of the error variation was 0.1 (roughly 14 pixels). For each pixel, there was mild temporal autocorrelation (βi = 0.2). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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depend on the values of the other coefficients and in this case are nar-
rower (Fig. 4b, blue error bars). The standard errors are consistent with 
the statistical conclusions of no overall time trends (the coefficients do 
not differ from zero; black error bars) and no differences among land- 
cover classes (the coefficients do not differ from each other; blue error 
bars). Finally, the estimates of the range r̂ = 0.103 and non-spatial 
variance nugget = 0.060 were close to the values used to simulate the 
data (0.10 and 0.04, respectively). 

For the second simulation (Fig. 4c, d), PARTS correctly rejected the 
null hypothesis that ci was the same in all land-cover classes (F3,9996 =
12.68, P < 10−6). In contrast, the hypothesis that there was no overall 
time trend was not rejected (t9999 = 0.74, P = 0.46). It might seem 
paradoxical that for this simulation, it is statistically easier to detect 
differences in time trends among land-cover classes than to determine 
whether the time trend on average over all pixels (regardless of land- 
cover class) differs from zero. This seeming paradox is caused by in-
formation that is available from pixels that are in close proximity. If 
nearby pixels in different land-cover classes show differences in their 
trends, then the statistical test will pick up these differences. In contrast, 
for the null hypothesis that on average for all pixels there is no trend, the 
statistical analysis does not have this type of contrasting information 
between nearby pixels. 

Fig. 4 gives only a single simulation example, but Ives et al. (2021) 
include a detailed study of similar simulations. The simulation study 

shows the PARTS method reports P-values that do not give inflated type I 
errors and has good statistical power to reject the null hypothesis when 
it is false. 

3.2. Global trends in greening and browning 

3.2.1. Alaska 
Alaska shows a visual pattern of positive trends in NDVI (crel) being 

more common at higher latitudes (Fig. 5a,b), consistent with “Arctic 
greening” (Jia et al., 2003; Ju and Masek, 2016). Compared to LS, AR 
identified fewer pixels with time trends (P < 0.05), which is consistent 
with the simulation findings that AR gave less inflated type I error rates; 
the differences in maps produced by AR and LS are depicted in fig. S1. 
On average, there was moderate temporal autocorrelation (βi = 0.40 ±
0.23 (SD); Fig. 5c). Furthermore, areas of grassland and shrubland 
appear to have more positive crel than areas of savanna (Fig. 5a,d). We 
tested four statistical null hypotheses: (i) the mean time trend in NDVI is 
zero when the mean is taken across the entire map of Alaska; (ii) the 
mean time trends in NDVI for each of the land-cover classes are equal, 
implying that land-cover classes do not differ; (iii) in a regression of time 
trends (regardless of land-cover class) on latitude, the coefficient for 
latitude is zero; and (iv) in a regression of time trends on latitude and 
land-cover class, the interaction between latitude and land-cover class is 
zero, implying that the effects of latitude are the same among land-cover 

Fig. 4. AR estimates of time trends, ̂ci, fit to a simulation of time series of length 30 when there is temporal autocorrelation (βi = 0.2) and spatial autocorrelation (r =
0.1). Land-cover classes are shown as shaded blocks, with land-cover class 4 being the lightest shade (labelled in the lower-left corner of each map). Only those values 
of ̂ci that were significant at the alpha = 0.1 level are shown (brown to green scale). In (a) and (b) there were no time trends (ci = 0), and in (c) and (d) the time trends 
in the simulation model were ci = 0, 0.1, 0.2, and 0.3 for land-cover class 1–4. In (b) and (d), the estimates and standard errors of slopes for each land-cover class 
given by GLS are shown in black, the GLS conditional standard errors are shown in blue, and the mean and standard error of ĉi (ignoring spatial autocorrelation) 
given by an ANOVA are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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classes. These hypotheses are stated as if they were regression analyses 
or analyses of covariance (ANCOVA), highlighting that PARTS is in 
essence a method for performing regression analyses at the scale of an 
entire map. 

We applied PARTS both without (steps 1–3) and with data partitions 
(steps 1–4), using 5, 10, 15, and 20 partitions (Table 4). The overall 
conclusion was that hypotheses (i) and (iv) were not rejected, implying 
that there was no overall trend in NDVI, and there was no land-cover 
class by latitude interaction. However, null hypotheses (ii) and (iii) 
were rejected, implying differences in trends among land-cover classes 
and with latitude. These conclusions are based on the analyses that 
partition the dataset and then combine the statistical results (Ppart). 
Applying a single GLS analysis to all of the data (PGLS for np = 1) failed to 
reject any null hypothesis. This result is the opposite from what we 
found in our simulations in which GLS applied to the entire map gave 
tests that were at least as powerful as those obtained with partitions (see 
Table 3 and Fig. 3 in Ives et al., 2021). This contrast is the result of 
adjacent pixels being very highly autocorrelated, as shown by the much 
smaller nugget effect estimated from GLS (Table 4). These high corre-
lations between adjacent pixels are only detectable when analyzing all 
pixels, because partitioning the data will remove a large fraction of the 
pairwise correlations between pixels that are adjacent to each other. To 
verify this explanation, we removed every other row and column from 
the data, which caused the nugget effect to increase to the same level as 
found in the case of 10 partitions (results not shown); this confirmed that 
high correlations between adjacent pixels were the cause of the small 
nuggets. Because a small nugget will result in a higher estimate of the 
spatial autocorrelation, it will reduce statistical power. High spatial 

autocorrelation between adjacent pixels could be an artifact of image 
processing, such as those caused by atmospheric scattering and conse-
quent adjacency effects (Semenov et al., 2011), and sensor effects such 
as linear-shift-invariant blurring, sampling effects, and shift-invariant, 
signal-independent additive white noise in the AVHRR data (Reich-
enbach et al., 1995). Therefore, because partitioning removes these ef-
fects, we consider the partition results more reliable than those from a 
single GLS. Because adjacency issues are likely to be common in many 
remote-sensing datasets, we recommend partitioning even in small 
datasets that do not require partitioning for computational reasons. 

The PARTS approach of combining statistical results among parti-
tions (Ppart) had better performance than multiple-comparison correc-
tions (Phoch and Pfdr). We repeated the model for land-cover classes 
(hypothesis ii) five times (Table 4(ii)). Because the partitions were 
selected randomly, the results differed somewhat among repetitions. 
Nonetheless, the range of values of Ppart were generally less than Phoch 
and Pfdr, thereby giving more repeatable results. Also, as found in sim-
ulations (Ives et al., 2021), the statistical power given by Ppart was 
generally higher than Phoch and Pfdr. 

A closer look at the analyses gives more details about the character of 
autocorrelation underlying the statistical results. Focusing on the model 
for land-cover classes (hypothesis ii) with 10 partitions, the average 
standard error of the estimates of crel was 0.071, whereas the standard 
deviation of the unexplained variation in the partitioned GLS model was 
estimated as σ̂γ = 0.187. This result implies that there were fixed (non- 
temporally varying) differences in trends among pixels, because the 
spatial variation in crel (0.187) exceeded that caused solely by pixel-level 
uncertainty in crel (0.071). In other words, the variation among values of 

Fig. 5. For Alaska west of −141◦ longitude, patterns of time trends in NDVI, 1982–2015. (a) Time trends in NDVI measured by crel, the estimate of ci from regression 
with autocorrelated errors (AR; Eq. (2)) divided by the mean NDVI in each pixel. White corresponds to pixels either that have NDVI values too low to analyze or that 
contain mixed or unstable land-cover classes. (b) Pixels for which the null hypothesis of crel = 0 was rejected by AR (P < 0.05). (c) The strength of temporal 
autocorrelation (parameter βi; Eq. (2)), and (d) land-cover classes for pixels containing at least 50% of a single class. There are a total of 20,694 pixels with estimates 
of crel: grassland (2924), savanna (7361) and shrubland (10,409). Deciduous forest (1 pixel), evergreen needle forest (83 pixels) and mixed forest (36 pixels) were 
removed, as were 33 pixels that were outliers. 
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crel across the map was due, in part, to purely spatial differences among 
time trends that cannot be attributed to spatiotemporal variation. 
Because the spatial autocorrelation matrix was estimated from the cor-
relations among temporal residuals across pixels (PARTS step 2) and 
hence did not use information about possible spatial variation in the 
fixed time trends among pixels, we performed a study by varying the 
spatial range parameter r in PARTS step 3 while keeping other param-
eters of the model fixed (Table 5). The maximum likelihood estimate of r 
from PARTS step 3 was r̂ = 142 km, slightly less than the originally 
estimated value of r̂ = 185 km from PARTS step 2. Nonetheless, the 
difference in log likelihood was small (1.26), and the P-value for the test 
of differences among land-cover classes only changed from 0.009 to 

0.0108. Thus, the two methods for estimating r (from PARTS step 2 and 
step 3) give the same conclusions. The R package remotePARTS can 
estimate r and g using either method. When computationally feasible, we 
recommend using both methods as a check on the conclusions and as a 
way to extract information about the character of autocorrelation 
(spatiotemporal versus purely spatial) in a dataset. 

We also compared PARTS (with np = 10) to a “standard” method: we 
estimated time trends for each pixel using LS and then performed 
ANOVA on the resulting estimates of the time trends (Fig. 6). Roughly 
70% of the pixels were identified by LS as being significant compared to 
roughly 55% for AR (see also Fig. S1). Furthermore, the ANOVA showed 
higher estimates of trends for grassland and shrubland with very narrow 
standard error bars, giving a highly significant overall positive trend 
combining land-cover classes (t20674 = 77.76, P < 10−15) and differences 
among land-cover classes (F3, 20,672 = 2716, P < 10−15). The very small 
standard errors of the trend estimates for each land-cover class (Fig. 6a, 
red bars) obscures the true variability in crel within land-cover classes. 
We also tested the null hypothesis that there was no effect of latitude 
(Fig. 6c), which was similarly highly significant in a standard regression 
analysis (t20674 = 106.6, P < 10−15). These “standard” results that do not 
account for spatial autocorrelation give falsely low P-values, and results 
of this type of analysis should not be trusted. 

The extent of spatial autocorrelation identified by PARTS is given by 
the parameters fit to the exponential-power function, exp(−(dij/r)g), and 
the nugget. The estimates of r̂ = 185 km and ĝ = 0.571, and nugget =
0.212 from the land-cover class model with np = 10 (Table 4) imply that 
the spatial autocorrelation between pixels drops to 0.10 only above 
distances of 600 km. The maximum extent of the Alaska map is 2000 km, 
implying that if we limited the analyses to pixels with autocorrelation 
less than 0.10, we could analyze at most 16 pixels. 

3.2.2. Continents 
For the global data, we analyzed the full datasets for the six conti-

nents separately; pixels were 0.083 degree (~8 km), resulting in 91,459 
(Australia) to 570,250 (Asia) pixels per continent. We used PARTS with 
partitions of 2000 pixels, leading to varying numbers of partitions (np) 

Table 4 
For Alaska west of −141◦ longitude, statistical tests of differences among time trends, crel, in mean annual NDVI, 1982–2015.   

np nugget PGLS/Ppart Phoch Pfdr 

(i) intercept 1 0.050 1.000 – – 
5 0.162 0.571 0.731 0.731 
10 0.237 0.450 0.729 0.729 
15 0.260 0.427 0.744 0.698 
20 0.274 0.400 0.748 0.621 

(ii) land-cover class 1 0.050 0.600 – – 
5 0.181 0.202 

(0.075-0.237) 
0.310 
(0.134–0.611) 

0.296 
(0.134–0.418) 

10 0.212 0.009 
(0.004–0.020) 

0.011 
(0.006–0.030) 

0.011 
(0.006–0.030) 

15 0.247 0.012 
(0.004–0.017) 

0.034 
(0.002–0.100) 

0.024 
(0.002–0.062) 

20 0.265 0.006 
(0.005–0.027) 

0.053 
(0.0003–0.168) 

0.048 
(0.0003–0.138) 

(iii) latitude 1 0.050 0.052 – – 
5 0.164 0.006 0.011 0.011 
10 0.209 0.002 0.002 0.001 
15 0.260 0.0003 0.001 0.0004 
20 0.247 0.0001 0.0002 0.0001 

(iv) land × latitude 1 0.050 0.610 – – 
5 0.183 0.230 0.284 0.284 
10 0.252 0.152 0.243 0.242 
15 0.298 0.132 0.414 0.324 
20 0.324 0.094 0.032 0.032 

Four null hypotheses were tested: (i) the mean slope does not differ from zero (intercept b0 = 0 in Eq. (3)), (ii) there is no difference among land-cover classes, (iii) there 
is no difference with latitude, and (iv) there is no land-cover class by latitude interaction. For the last test, the null hypothesis was the model including land-cover class 
and latitude, but no interaction between them. Hypotheses were tested for the entire dataset (np = 1) and for partitions into np = 5, 10, 15, and 20 subsets. Tests were 
performed with an F-test (np = 1, PGLS) or LRT (np > 1, Ppart), and by selecting the partition with the lowest P-value and correcting for multiple comparisons (Phoch and 
Pfdr). For land-cover class (ii), the partition analyses were repeated five times, and the P-values are median (range). 

Table 5 
For Alaska west of −141◦ longitude, the effect of the value of the range 
parameter, r, on the GLS model likelihood and statistical test of differences 
among land-cover classes.  

r (km) ΔlogLik P Grassland Savanna Shrubland 

123 −0.67 0.0116 0.053 0.024 0.044 
132 −0.21 0.0112 0.053 0.024 0.044 
142 0.00 0.0108 0.053 0.024 0.044 
154 −0.07 0.0103 0.053 0.024 0.043 
168 −0.47 0.0097 0.052 0.023 0.043 
185* −1.26 0.0090 0.052 0.023 0.043 
205 −2.53 0.0083 0.052 0.023 0.043 
231 −4.42 0.0074 0.052 0.022 0.042 
264 −7.17 0.0065 0.052 0.022 0.042 
308 −11.16 0.0055 0.052 0.022 0.042 
370 −17.07 0.0045 0.052 0.022 0.042 

The PARTS analysis was performed with 10 partitions using the same partitions 
that gave the median P-value for the test of differences among land-cover classes 
(Table 4(ii)). The nugget effect and parameter g for the spatial autocorrelation 
matrix were fixed while the range r was varied. For each value of r, the model 
was refitted. ΔlogLik gives the difference in log likelihoods between each model 
and the best model (r = 142 km). The value of r = 185 km (marked with *) was 
estimated from the correlations among residuals from the time-series analysis 
(PARTS step 2). Coefficients for the time trends crel are given for the three land- 
cover classes. 
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per continent. With this partition size, analyzing a model for the largest 
map (Asia) with an 8-core, 2.79 GHz processor (CPU: AMD Ryzen 
73,700× with an AMD X570 chipset; memory: dual channel DDR4 at 
1800 MHz) took less than 15 min (PARTS steps 1–4). Fig. 1a shows the 
pixel-level AR estimates of crel for all continents. Although we used the 
AR method, the patterns of browning and greening are similar to those 
produced by LS, but LS identified many more pixels than AR as “sig-
nificant” (Fig. S2). We tested the same four null hypotheses we illus-
trated for Alaska, repeating PARTS three times for each analysis to assess 
variability in results (Table 6). As for Alaska (Table 5), we also fit the 
range parameter r using the GLS (PARTS step 3), in addition to the 
correlations among time-series residuals (PARTS step 2), to confirm that 
this did not affect the conclusions. For the case of differences among 

land-cover classes (hypothesis ii), the largest proportional change in r 
was for Australia (from 540 km in PARTS step 2 to 100 km in PARTS step 
3), yet the P-value for the hypothesis test changed little (P = 0.0084 to P 
= 0.0045). There were similarly negligible changes in the P-values for 
the other continents, so these are not reported. 

In the test for whether there is a trend in NDVI averaging over all 
pixels, PARTS failed to reject the null hypothesis in every continent 
except Asia, where there was weak support for an overall trend (Ppart =
0.01–0.02; Table 6). This failure to identify a significant overall trend in 
five of six continents occurred even though the estimates of the trends 
were positive in most land-cover classes for every continent (Fig. 7). The 
differences in trends among land-cover classes were significant for all 
continents (black points in Fig. 7, Table 6). Therefore, different types of 
land cover are greening, or in a few cases browning, at different rates. 
However, there were only five and two land-cover classes in Asia and 
Europe, respectively, that have trends statistically greater than zero 
(solid points rather than open points in Fig. 7). The patterns among land- 
cover classes were distinctly different among continents. For example, in 
Europe the land-cover class showing the greatest positive trend in NDVI 
was evergreen needle forest, whereas evergreen needle forest had 
among the lowest trends in North America. These patterns are found for 
pixels that have stable land-cover in which a single land-cover type 
makes up >50% of the pixel. Therefore, these patterns reflect changes in 
mean annual NDVI that is not attributable to large changes in land-cover 
classes over time. 

To compare with PARTS, we also performed a “standard” analysis by 
computing the pixel-level time trends using LS and then performing an 
ANOVA to test for differences in LS slopes among land-cover classes 
(Fig. 7, red). In the ANOVA, the differences among land-cover classes 
were highly significant for all continents (P < 10−16). Furthermore, the 
estimates of land-cover classes were sometimes substantially different 
from the PARTS estimates. For example, the ANOVA estimate of the 
trend in cropland in Asia was twice the value of the PARTS estimate, 
while the ANOVA estimate for deciduous broadleaf forest was much 
lower. Over all continents, the PARTS estimates were less variable 
among land-cover classes than the ANOVA estimates. 

PARTS also found no significant effect of latitude on greening in any 
continent (Table 6). However, for all continents except Australia there 
was a strong latitude × land-cover class interaction (based on Ppart). 
Thus, while there were significant effects of latitude at the continental 
scale, these occurred only within land-cover classes. 

4. Discussion 

Remote-sensing data contain tremendous amounts of information, 
making it possible to answer questions about changes in the world with 
remarkable spatial detail. The amount of information, however, creates 
two challenges: how to pose hypotheses at the right scale of interest, and 
how to test these hypotheses with appropriate statistics that are 
computationally feasible. PARTS meets these challenges and makes it 
possible to fit regression-style models to test hypotheses about how time 
trends depend on spatially varying independent variables such as land- 
cover class and latitude. Patterns through time and in space may be 
caused by factors that are not part of the hypothesis being tested, and 
that is why it is necessary to account for “unexplained” temporal and 
spatial autocorrelation – patterns of variation in errors that are not 
explained by independent variables in the model. PARTS accounts for 
both temporal and spatial autocorrelation, making it able to reveal 
patterns underlying the data and to guard against falsely identifying 
patterns that are not in the data. 

PARTS breaks down the problem of analyzing large spatiotemporal 
datasets into two stages: fitting the time series within each pixel to es-
timate pixel-level time trends, and then analyzing the pattern of time 
trends among pixels. The first stage is standard in the remote-sensing 
literature; therefore, the scientific advance given by PARTS is the abil-
ity to analyze time trends at the scale of entire maps. Nonetheless, 

Fig. 6. Comparison of statistical analyses of time trends, crel, in NDVI for Alaska 
west of −141◦ longitude (Fig. 5). (a) Effects of land-cover class on crel given by 
PARTS analysis (black) dividing the map into 10 partitions each containing 
2094 pixels. Bars give the unconditional standard errors of the estimates. An 
ANOVA of the LS estimates of crel gives greater estimates of the overall time 
trends in grassland and shrubland, with very small standard errors (red points 
and bars). (b) Proportions of pixels containing significant time trends (P < 0.05, 
either positive or negative) in each land-cover class, where P-values were 
calculated from either LS (white bars) or AR (black bars). Numbers of analyzed 
pixels in each land-cover class are given above the bars, and the red horizontal 
lines at −0.025 and 0.025 give the thresholds beyond which pixels should be 
identified as significant under the null hypothesis of no time trend. (c) 
Regression of the AR estimates of crel against latitude, showing only 200 points 
for clarity. The red line gives the relationship for standard regression, which is 
highly significant (t20692 = 52.41, P < 10−16), and the black line is from PARTS 
with 10 partitions (P = 0.0013; Table 4). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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getting the best statistical estimates of the time trends within pixels will 
improve the overall data analyses. Thus, we examined the challenges of 
both fitting pixel-scale time series and fitting map-scale patterns in the 
data. 

4.1. Temporal patterns 

Fitting a statistical model to time series from individual pixels gives 
both an estimate of the time trend and the statistical significance of the 
time trend. We investigated four statistical methods: least-squares 
regression (LS) (e.g., Fensholt and Proud, 2012; Myneni et al., 1997; 
Piao et al., 2011), the Mann-Kendall test combined with the Theil-Sen 
slope estimator (MK) (Fensholt et al., 2015; Zhu et al., 2016), the size- 
robust trend test (SR) (Fomby and Vogelsang, 2002; Vogelsang, 1998), 
and regression with autoregressive errors (AR) (Box et al., 1994; Ives 
et al., 2010). Of these, AR gave the most accurate estimates of the time 
trends in our simulations, that is, the estimates that have a combination 
of low bias and low standard errors. When there was temporal auto-
correlation, LS and MK gave highly inflated type I error rates. While SR 
gave good type I errors, it had reduced statistical power to detect trends 
when they truly existed and gave estimates with relatively large stan-
dard errors (Table 2). 

Despite the common practice of calculating P-values for trends in 
pixel-level time series, these P-values do not test hypotheses about the 
map-scale patterns in time trends. Nonetheless, an informal way to give 
a visual impression of patterns on a map is to use P-values as a filter: for 
example, only pixels with P-values <0.1 could be shown on the map. For 
this, P-values from AR are adequate, even though they can show mildly 
inflated type I errors when there is strong temporal autocorrelation and 
“short” time series of length 30. Nonetheless, the justification for using 
AR in the PARTS analysis is that it gives the most accurate estimates of 
the trends. 

4.2. Spatial patterns 

Although the problem of spatial autocorrelation in remote-sensing 
analyses is recognized (de Beurs et al., 2015; Tomaszewska et al., 
2020; Zhou et al., 2001), currently there is no available statistical 
method that can account for spatial autocorrelation for maps of the size 
commonly obtained by remote sensing, which routinely exceed 105–106 

pixels. Ignoring spatial autocorrelation incorrectly assumes that pixels 
are independent and can also fail to leverage information, for example, 
to identify differences in time trends among land-cover classes contained 
in nearby pixels. This problem can be seen visually. If there were no 
spatial autocorrelation, then pixels with high-magnitude trends would 
pepper a map (Fig. 4a), which is rarely seen in remote-sensing data. In 
contrast, random patterns in spatially autocorrelated data form clusters, 
and these random patterns can look deceptively “significant” (Fig. 4b,c). 

We analyzed NDVI trends both in Alaska and among continents using 
a standard approach that ignores temporal and spatial autocorrelation: 
we estimated trends with LS and then performed comparisons among 
explanatory variables using ANOVA. With this approach, almost all time 
trend estimates in any statistical model were statistically significant 
(Figs. 6, 7). For example, the mean time trend averaged across all land- 
cover classes in all continents differed from zero, with the majority being 
positive (Fig. 7). In contrast, a PARTS analysis showed that only Asia and 
Europe contained land-cover classes that have significant time trends. 
Furthermore, the PARTS analysis showed less variability among land- 
cover classes than the ANOVA. The dataset that we analyzed 
(NDVI3g) has been used numerous times to analyze global greening and 
browning trends (e.g., Bi et al., 2013; Fensholt et al., 2015; Fensholt and 
Proud, 2012; Myneni et al., 1997; Piao et al., 2011; Xu et al., 2013; Zhou 
et al., 2001; Zhu et al., 2016), which is why we selected this dataset for 
our analyses. In this previous work, more-targeted analyses of specific 
regions were often made, in contrast to our continent-scale analyses that 
do not address regional patterns within continents. Furthermore, we 
only analyzed pixels with stable land-cover classes, thereby excluding 

Table 6 
Statistical tests of differences among relative time trends, crel, in mean annual NDVIs, 1982–2015, for six continents.  

Model Continent n np nugget Ppart Phoch Pfdr 

(i) intercept Africa 214,121 106 0.03 0.16, 0.17, 0.18 0.33, 0.36, 0.37 0.27, 0.29, 0.29 
Asia 570,250 283 0.35 0.01, 0.01, 0.02 0.06, 0.07, 0.09 0.03, 0.03, 0.04 
Australia 91,459 45 0.18 0.24, 0.24, 0.26 0.36, 0.36, 0.37 0.34, 0.34, 0.36 
Europe 174,498 86 0.23 0.06, 0.07, 0.07 0.07, 0.39, 0.46 0.07, 0.14, 0.15 
North America 345,264 172 0.34 0.44, 0.44, 0.49 0.91, 0.94, 0.97 0.77, 0.77, 0.79 
South America 190,832 94 0.11 0.39, 0.40, 0.41 0.75, 0.96, 1.00 0.62, 0.63, 0.64 

(ii) land-cover class Africa 182,587 90 0.03 0.0010, 0.0014, 0.0014 0.0001, 0.0471, 0.0499 0.0001, 0.0246, 0.0499 
Asia 441,312 219 0.35 0.0002, 0.0002, 0.0002 0.0028, 0.0096, 0.0197 0.0020, 0.0096, 0.0098 
Australia 80,958 40 0.18 0.0066, 0.0082, 0.0096 0.0214, 0.0477, 0.1220 0.0214, 0.0469, 0.0625 
Europe 110,385 54 0.23 <0.0001, <0.0001, <0.0001 <0.0001, <0.0001, 0.0004 <0.0001, <0.0001, 0.0004 
North America 257,344 128 0.36 <0.0001, <0.0001, <0.0001 0.0006, 0.0034, 0.0062 0.0003, 0.0021, 0.0045 
South America 152,549 75 0.09 <0.0001, <0.0001, <0.0001 <0.0001, <0.0001, <0.0001 <0.0001, <0.0001, <0.0001 

(iii) latitude Africa 214,121 106 0.03 0.42, 0.44, 0.44 0.90, 0.93, 0.98 0.74, 0.78, 0.79 
Asia 570,250 283 0.35 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 
Australia 91,459 45 0.18 0.60, 0.61, 0.62 0.83, 0.89, 0.91 0.81, 0.83, 0.84 
Europe 174,498 86 0.23 0.08, 0.08, 0.09 0.02, 0.03, 0.06 0.02, 0.03, 0.05 
North America 345,264 172 0.34 0.73, 0.75, 0.76 1.00, 1.00, 1.00 1.00, 1.00, 1.00 
South America 190,832 94 0.11 0.15, 0.15, 0.16 0.58, 0.71, 0.89 0.30, 0.31, 0.31 

(iv) land × latitude Africa 182,587 90 0.03 0.0047, 0.0074, 0.0112 0.0002, 0.0012, 0.0472 0.0002, 0.0007, 0.0472 
Asia 441,312 219 0.36 0.0003, 0.0004, 0.0004 <0.0001, 0.0004, 0.0010 <0.0001, 0.0004, 0.0010 
Australia 80,958 40 0.18 0.0163, 0.0555, 0.0785 0.0227, 0.1526, 0.1562 0.0227, 0.1526, 0.1530 
Europe 110,385 54 0.25 0.0003, 0.0006, 0.0007 0.0001, 0.0058, 0.0461 0.0001, 0.0033, 0.0277 
North America 257,344 128 0.37 0.0006, 0.0007, 0.0007 <0.0001, 0.0066, 0.0220 <0.0001, 0.0046, 0.0220 
South America 152,549 75 0.10 <0.0001, <0.0001, <0.0001 <0.0001, <0.0001, <0.0001 <0.0001, <0.0001, <0.0001 

Four null hypotheses were tested: (i) there is no overall trend (intercept b0 = 0 in Eq. (3)), (ii) there is no difference among land-cover classes, (iii) there is no difference 
with latitude, and (iv) there is no land-cover class by latitude interaction. The number of pixels (n) differed according to the model, because models that included land- 
cover classes only used pixels with >50% of a single class. Partitions of 2000 pixels were used, giving different numbers of partitions among continents (np). The nugget 
gives the magnitude of non-spatially autocorrelated variation. Average values of the parameters governing the extent of spatial autocorrelation are ̂r = 285, 316, 531, 
287, 296, and 371 km, and ĝ = 0.42, 0.52, 0.61, 0.47, 0.50, and 0.42 for Africa, Asia, Australia, Europe, North America, and South America. P-values were calculated 
using a partition LRT (Ppart) and using Hochberg and FDR corrections for multiple comparisons (Phoch, and Pfdr). Analyses were repeated three times, giving three P- 
values for each test. 

A.R. Ives et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 266 (2021) 112678

14

trends caused by changing land cover and land use. Therefore, our 
conclusions are not directly comparable to previous analyses. None-
theless, our results suggest that previous conclusions drawn about pat-
terns of greening and browning throughout the world should be re- 
examined. 

4.3. Appropriate statistical models 

The statistical challenges we address all revolve around temporal 
and spatial autocorrelation, and this warrants discussion of what are 
temporal and spatial autocorrelation. From a statistical perspective, a 
model to test a specific hypothesis separates the variance in the response 
variable into that which can be explained by independent variables (the 
“mean” or “fixed” component of the model) and the unexplained vari-
ation that cannot (the “variable” or “random” component of the model). 
However, this does not mean that the unexplained variation is white 
noise. The variation treated as unexplained in the model has a cause, and 
a cause will often have temporal and spatial structure. Temporal and 
spatial autocorrelation can be interpreted as caused by environmental 
variables that are not measured (such as regional weather patterns) or 
by the ways in which biological systems respond to environmental 
variation. As an example of the latter, temporal autocorrelation will 
likely occur for any remote-sensing measure, such as NDVI, that reflects 
plant growth and succession following disturbances such as droughts 
(Fig. 2c,d). Spatial autocorrelation could be caused by the same factors 
that cause temporal autocorrelation, such as succession following a 
drought (temporal autocorrelation) if the drought occurred across many 
pixels (spatial autocorrelation). Similarly, areas of the same vegetation 
type (spatial autocorrelation) could respond to the same disturbance 

such as fire in the same way, recovering from the fire at similar rates 
(temporal autocorrelation). 

Given the complexities of statistical hypothesis testing with temporal 
and spatial correlation, is it necessary to do statistical tests at all? This 
question is all the more germane when considering that Asia, despite 
greening in all land-cover classes, did not show a statistically significant 
increase in NDVI when combining all pixels (Figs. 1a, 7). Because we 
have measurements of NDVI for almost all of the land area of Asia, from 
a statistical perspective we have a complete census, not a sample, so why 
are statistics needed? The need for statistical tests can be illustrated with 
the following comparison. First, suppose foresters want to assess the 
growth of biomass in a 1-km2 forest stand over 30 years. They measure 
the biomass of every tree in the stand every year, giving them the change 
in biomass without error. Because this is a complete sample, statistics 
are unnecessary. However, now suppose that their charge is not just to 
analyze the past, but to predict whether biomass will be higher in 10 
years. To answer this question, spatial patterns of forest growth matter. 
If, for example, 1/3 of all locations exhibited a decrease in biomass, but 
these locations were scattered and could be attributed to deaths of large 
trees, then it would be reasonable to conclude that the treefalls are 
normal and to confidently predict a continued increase in biomass in the 
next 10 years. However, if instead biomass increased in the northern 2/3 
of the stand but decreased in the southern 1/3, more caution is neces-
sary. In the absence of an explanation for this spatial pattern, it is likely 
that a single stochastic event, maybe a fire 40 years ago in the northern 
2/3 of the stand, is responsible for the increase in biomass there. 
Depending on the stage of succession of the northern 2/3, continued 
increase in biomass for the next 10 years might not occur. Thus, even 
though the foresters might have a complete sample of trees for 30 years, 
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Fig. 7. Differences in time trends, crel, in mean annual NDVI among land-cover classes for six continents. Land-cover classes that have a statistically significant trend 
(P < 0.01) are shown with filled black dots, and non-significant classes are shown with black circles; bars represent unconditional standard errors. Analyses were 
performed after partitioning the dataset into subsets of 2000 pixels (Table 5), and for each continent land-cover classes represented at least 0.5% of the pixels. 
Outliers were removed. P-values at the top of each panel correspond to the statistical test that values of crel differ among land-cover classes. We also analyzed the 
pixel-level trends using LS regression and then performed an ANOVA to compare land-cover classes. The ANOVA estimates (±1 standard errors) are given in red. 
Land-cover classes are: Cropland, Cropland-vegetation mosaic (Cropland mosaics), Deciduous broadleaf forest (Decid broad), Deciduous needle leaf forest (Decid 
needle), Evergreen broadleaf forest (Evergr broad), Evergreen needle leaf forest (Evergr needle), Grassland, Mixed forest, Savanna, and Shrubland. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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considerations when answering the question about future change are 
different from considerations when answering the much narrower 
question of whether there has been a past change in a particular area. 

This example of predicting change in a forest stand is analogous to 
the situation faced when testing hypotheses about global changes. When 
retrospectively analyzing a dataset, a significance test assesses the 
likelihood that a pattern observed in the sample that is analyzed will also 
occur in the entire population of all possible samples. If it is possible to 
obtain a complete sample (i.e., the entire population), statistics are not 
needed. However, when analyzing a dataset to make future predictions, 
a complete sample is impossible, because the appropriate collection of 
possible samples includes the future populations. We have not addressed 
the issue of long-term forecasting here, because this would require not 
only a model that fits past changes, but also justification for assuming 
that the processes driving past changes continue unabated into the 
future. Nonetheless, statistically assessing past changes in the context of 
the entire realm of possibilities is appropriate when using past changes 
to assess the realm of possible futures. 

4.4. PARTS 

PARTS can fit statistical models to very large datasets by partitioning 
them into subsets and then combining the separate statistical tests into 
one overall test. Our reason for subsampling pixels is only to reduce the 
computational burden of statistical model fitting. For example, a 
100,000-pixel map results in 1010 pairwise spatial autocorrelations be-
tween pixels. For GLS, this autocorrelation matrix must be mathemati-
cally inverted, which is not computationally practical. Subsampling is 
sometimes used to avoid spatial autocorrelation altogether (Lahiri, 
2003). For this, semi-variograms or other methods are used to identify 
the scale at which points can be assumed to be independent, and regular 
statistical models that do not account for spatial autocorrelation are then 
applied to the subsampled points. Not surprisingly, this approach loses a 
lot of information; for example, our analyses of Alaska (Table 4) would 
retain only 16 pixels if spatial autocorrelation was required to be less 
than 0.1. PARTS explicitly accounts for spatial autocorrelation and uses 
the correlated information in the analyses, which makes statistical tests 
more powerful than simply thinning data to the point of spatial 
independence. 

Because the partitions used by PARTS are constructed randomly, the 
resulting P-values can differ among repeated analyses (Tables 4, 6). 
Nonetheless, in our applications this variation was not large enough to 
change any conclusions. Furthermore, even with this variability in P- 
values, PARTS gives correct type I errors and has good statistical power. 
PARTS is computationally efficient, making it possible to analyze even 
large datasets multiple times, in which case the median P-values can be 
used for hypothesis testing. As with any statistical model, diagnostics of 
model fit should be performed, and the R package remotePARTS con-
tains the tools to perform the appropriate diagnostics. 

By formulating a null hypothesis and statistical model to test it, 
PARTS forces an explicit statement of the problem in question, making it 
possible to compare different patterns. For example, for Alaska west of 
–141◦ longitude, we found a positive effect of latitude on greening 
(Table 4), but there was no effect of latitude on greening for North 
America as a whole (Table 6). PARTS could be used to analyze regions 
separately and then to statistically compare regions. For example, the 
strategy of using latitudinal bands as employed by Zhou et al. (2001) 
could be used to determine whether latitudinal trends in greening are 
only observed in the highest latitudinal bands. Similar analyses could 
investigate land-cover class by latitude interactions within different 
latitudinal bands. PARTS is flexible to address many hypotheses. 

5. Conclusion 

PARTS analyses make it possible to identify underlying patterns and 
test hypotheses at the scale of entire maps. By accounting for both 

temporal and spatial autocorrelation, PARTS both provides more power 
to detect underlying patterns and avoids false conclusions from the data. 

The strength of PARTS is its ability to analyze patterns over an entire 
map, but the requirement for a single model to analyze the entire map 
can sometimes be a limitation. For example, in the map of greening 
trends throughout the world (Fig. 1a) there are many regions on the 
scale of several hundred kilometers in diameter that appear to differ 
from surrounding areas. PARTS treats these patterns as spatial auto-
correlation in the random variation of the statistical model. PARTS can 
be used to test specific, a priori hypotheses about regional patterns, such 
as whether regions (e.g., countries, ecoregions, or tiles on a regularly 
spaced grid over the map) differ in the mean value of a response vari-
able; this can be done by treating counties, ecoregions, or tiles as cate-
gorical variables in the same way as we treated land-cover classes for our 
analyses of NDVI. A key point here is that these are pre-defined regions 
that are treated as independent variables. PARTS is not designed to find 
regional patterns that are not initially specified in a model. This limits 
the ability of PARTS to be used for data exploration. As remote-sensing 
datasets continue to increase in temporal resolution (e.g., daily records) 
and spatial resolution (e.g., 3 m), additional statistical methods will be 
needed to investigate regional-scale patterns nested within map-scale 
patterns. 

From a statistical perspective, PARTS requires little to be specified in 
a model. The time-series analyses of each pixel give estimates not only of 
time trends, but also of the intercept and strength of temporal auto-
correlation (ai and βi in Eq. (1)), and uncertainty in the estimates. 
However, PARTS does not use this additional information when per-
forming the spatial analysis. This setting aside of time-series information 
adds flexibility to the PARTS approach; different types of time-series 
models beyond those we considered here could be used in PARTS 
when needed to account for different types of trends, such as nonlinear 
time trends. Setting aside time-series information also adds robustness to 
the PARTS analyses, in the sense of being relatively insensitive to mis- 
specification of the model. For example, unlike full spatiotemporal sta-
tistical models (Krainski et al., 2019; Wikle et al., 2019), PARTS does not 
require estimating how the values of the intercept from the pixel-level 
time-series (ai in Eq. (1)) vary through space, because these values are 
not used in the spatial analysis. However, because PARTS sets aside 
information that is not needed to address a specific map-scale hypoth-
esis, PARTS is not designed for predicting values at specific points in 
time and space. 

The strength of PARTS is its ability to pose and test hypotheses at the 
scale of entire maps, even for maps with millions of pixels. PARTS will 
hopefully be a useful tool for making the most of remote-sensing data. 
The need for statistical methods to identify and test map-scale patterns is 
growing as time series of satellite imagery are becoming increasingly 
available. Statistical methods will make it possible to use these data to 
capture different facets of global change. 
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Nyhan, B., Parker, T.H., Pericchi, L., Perugini, M., Rouder, J., Rousseau, J., 
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