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1  |  INTRODUC TION

E. C. Pielou was one of the founders of modern ecology, establishing 
the expectation of statistical rigour when exploring data for patterns 
predicted by ecological theory (Simberloff et al., 2017). I bought a copy 

of her ‘Ecological Diversity’ (Pielou, 1975) when I was an undergradu-
ate, and from the marginalia I know I read the book carefully at least 
twice before finishing my PhD. Pielou's mathematical background is 
clear in her work (Pielou, 1977); from mathematical first principles, she 
derived metrics that encapsulate distinguishing features of processes 
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Abstract
1.	 Many statistical models currently used in ecology and evolution account for co-

variances among random errors. Here, I address five points: (i) correlated random 
errors unite many types of statistical models, including spatial, phylogenetic and 
time-series models; (ii) random errors are neither unpredictable nor mistakes; 
(iii) diagnostics for correlated random errors are not useful, but simulations are; 
(iv) model predictions can be made with random errors; and (v) can random er-
rors be causal?

2.	 These five points are illustrated by applying statistical models to analyse simu-
lated spatial, phylogenetic and time-series data. These three simulation studies 
are paired with three types of predictions that can be made using information 
from covariances among random errors: predictions for goodness-of-fit, inter-
polation, and forecasting.

3.	 In the simulation studies, models incorporating covariances among random er-
rors improve inference about the relationship between dependent and inde-
pendent variables. They also imply the existence of unmeasured variables that 
generate the covariances among random errors. Understanding the covariances 
among random errors gives information about possible processes underlying the 
data.

4.	 Random errors are caused by something. Therefore, to extract full information 
from data, covariances among random errors should not just be included in sta-
tistical models; they should also be studied in their own right. Data are hard won, 
and appropriate statistical analyses can make the most of them.
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that might underlie patterns in a dataset. A prime example is her fa-
mous ‘Pielou diversity index’ (Pielou, 1966). Building on Pielou's initial 
approach, the combination of deriving metrics and testing them using 
nonparametric means (such as permutation tests) is a pervasive tool 
used throughout ecology and evolution (Gotelli & Ellison, 2004).

Although this is an E. C. Pielou Review, I am going to focus on the 
other broad approach to statistical inference in ecology and evolution: 
statistical models. The feature that distinguishes statistical models 
from metrics is the inclusion of probability distributions; while a metric 
might try to summarize the data with a single number that can be used 
to compare among datasets, a statistical model describes both deter-
ministic and probabilistic properties of the data that depend on how 
the data were generated. In other words, the statistical distributions 
of metrics are often unknown, whereas those for models are explicitly 
stated. For example, simple linear regression models include a fixed 
component that describes the relationship between the expected val-
ues of the dependent variable and the values of the independent vari-
ables, and random errors that capture the variance, skew and higher  
statistical moments of the process generating the dependent variable. 
By including the probabilistic properties of the data, statistical models 
can perform useful functions beyond those possible with metrics, such 
as making predictions.

When fitting statistical models, the focus is generally on the fixed 
component. The random errors are nuisances, rather than things of 
interest in their own right. Over the last several decades, ecology and 
evolution (along with all the social and physical sciences) have seen an 
explosion of statistical models to account for complex random errors 
that fail the iid (independent and identically distributed) test; these 
models explicitly account for covariances among the random errors. 
Perhaps the most familiar are mixed-effects models whose random 
effects create correlated random errors (Gelman & Hill, 2007). A good 
reason to use models that allow for correlated random errors is that 
they often guard against type I errors, that is, when a relationship 
between dependent and independent variables is mis-identifying as 
being statistically significant. As a corollary, not using models with 
correlated random errors can lead to rejected manuscripts. Although 
this might cast a negative pall on random errors that are not iid, this is 
a shame, because covariances among random errors reveal informa-
tion about the data and can aid in making predictions.

I have centred this review around five points about random er-
rors. These points are all based on ideas that are common in statis-
tics and the more statistical ecological and evolutionary literature. 
By bringing these ideas together, I hope to champion random errors 
as much more than just nuisances.

	(i)	 Correlated random errors unite many types of statistical models 
including spatial, phylogenetic and time-series models.

To give an example model with correlated random errors, con-
sider the generalized least-squares (GLS) regression model

For notational convenience, the n observed values of the dependent 
variable are given by a vertical vector Y =  (Y1, Y2, … Yn)’, and the in-
dependent variable is similarly given by X = (X1, X2, … Xn)’. The fixed 
component of the model contains the intercept b0 (which is the same 
for every observation) multiplied by J, the n × 1 vector of 1's, and the 
linear relationship between Y and X as specified by the coefficient 
b. Although for simplicity I have only included a single independent 
variable, others could be added, including interactions between them. 
The random error term ε is given by a multivariate Gaussian (normal) 
distribution that has mean zero and n × n covariance matrix σ2V(θ) that 
might depend on parameters θ. If this were an ordinary least-squares 
(OLS) model, the matrix V(θ) would be the diagonal matrix of 1's. This 
is the same as saying that the random errors are iid. If the diagonal ele-
ments are different, then variances differ among random errors, giving 
the case of heteroscedasticity. Nonzero off-diagonal elements of V(θ) 
make the random errors correlated.

Although the term ε in Equation (1) appears as a vector of n val-
ues, it is specified in the model in terms of a multivariate Gaussian 
random variable having mean zero and covariance matrix σ2V(θ); 
the n values of ε are realizations of the random variable. The co-
variance matrix gives information about a specific value of εi con-
ditional on the other values of ε. Different structures given to the 
covariance matrix makes it possible to apply the linear model to 
many types of data. To make this point, I will use the model to anal-
yse three example types of data: spatial, phylogenetic and time-
series data. For spatial data, σ2V(θ) will contain relatively higher 
covariances for locations that are closer together when whatever 
causes the random errors is more likely to affect close locations 
in similar ways (Figure  1a). Similarly, random errors for phylo-
genetic data are likely to reflect phylogenetic relatedness, with 
phylogenetically related species having correlated random errors 
(Figure 1b). Finally, in time series, points that are closer in time are 
likely to have correlated residuals. Correlations among random er-
rors can be negative as well as positive. In the specific simulations 
of time series I use later, the dynamics of the random errors are 
cyclic, and in this case the covariances in σ2V(θ) become negative 
for points separated by half a cycle period (Figure 1c). Recognizing 
that very different types of data differ only in their correlation 
structure unifies the statistical methods that can be used to anal-
yse them (e.g. Hansen & Martins, 1996; Pinheiro & Bates, 2000). 
This unification is not only conceptual but also practical, because 
the same methods can be used to fit the data. Nonetheless, for 
mathematical reasons models used for some types of data employ 
distinct fitting methods that take advantage of the specific way 
in which V(θ) is constructed to reduce computational burden (e.g. 
Bates et al., 2015; Hadfield, 2015; Harvey, 1989).

	(ii)	 Random errors are neither unpredictable nor mistakes.

Despite their name, ‘random errors’ are not random in 
the sense of lacking any pattern, and they are not errors in  
the sense of making unintended and avoidable mistakes. Instead, in 
statistics they have a specific, technical meaning as random variables 

(1)
Y=b0J+bX+�

�∼N
(

0, �2V[�]
)

.
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generated from specified probability distributions. For example, for 
Equation (1) the distribution of the random errors is explicitly stated 
as multivariate Gaussian. In normal life, outside the realm of quantum 
physics, truly random events do not occur; even the flip of a coin and 
random number generators are deterministic processes. In ecologi-
cal and evolutionary data, random errors are caused by something—
variables—many of which will be similar to the independent variables 
in a model and distinguished only because they are not measured. 
Because these variables are unmeasured, they can only be captured 
by their effects in generating covariances in the random errors. 
Nonetheless, some of these unmeasured variables may be important 
for explaining the dependent variable, maybe more important than 
the independent variables in a model. In this review, I will simulate data 
using variables that are then treated as unmeasured in the statistical 
model fitting, showing how unmeasured variables generate correlated 
random errors and challenges to model fitting and interpretation.

	(iii)	Diagnostics for the randomness of random errors are not useful, 
but simulations are.

Standard statistical textbooks contain methods for testing whether 
random errors in regression models are iid and Gaussian. For most eco-
logical and evolutionary datasets, these diagnostics are of little value, 
for three reasons. First, diagnostics might say that the random errors 
are not iid, but they do not indicate how severely this should reduce 
your faith in the results from the model; in some situations, regres-
sion models are robust to departures from iid. Second, if diagnostics 
identify departure from iid, which is often likely, you still have to em-
ploy alternative models to re-analyse the data, and diagnostics do not 
necessarily help you decide what would be a good alternative model. 
Third, some of the statistical problems that arise with correlated ran-
dom errors cannot be diagnosed, so diagnostics can give a false sense 
of security. I am not saying that diagnostics in general are not useful, 
but diagnostics for nonrandom random errors generally are not. A bet-
ter approach than diagnostics is to start with models capable of esti-
mating covariances in random errors and then to simulate the fitted 
models to understand how these covariances affect inference from 

the model. I base the three examples in this review on simulations. 
Because I use the simulations to illustrate the general challenges of 
covariances among random errors, I did not first fit the models to real 
data; nonetheless, the simulations show that diagnostics are not help-
ful, and that simulations are useful for building understanding of the 
statistical consequences of correlated random errors.

	(iv)	Model predictions can be made with random errors.

For statistical models, prediction takes three general forms: 
goodness-of-fit, interpolation/extrapolation and forecasting. 
Goodness-of-fit involves predicting what the values of the depen-
dent variable should be if the model were correct. These predicted 
(fitted) values do not assess the quality of the data, but instead as-
sess the quality of the model to capture the essential characteristics 
of the data. Interpolation and extrapolation for a simple linear model 
(Equation 1) involve first fitting the relationship between Y and X, 
and then predicting the value of Yh for a new value of Xh that does 
not occur within the original dataset. If the value of Xh is within the 
range of the observed values of X, this is interpolation, whereas if 
it is outside the range of X, it is extrapolation. Interpolation and ex-
trapolation are not so different from calculating fitted values from a 
model, except the uncertainty of the predicted value Yh will depend 
on the uncertainty in the estimates of the parameters in the model 
(Neter et al., 1989). Forecasting involves predicting values of Yt at 
time t from values of Ys at earlier points in time (s < t) and possibly Xs 
or Xt if these are known. Although forecasting is a form of extrapola-
tion, it is often distinguished from extrapolation because variability 
(either from random errors or uncertainty in parameter estimates) 
will compound through time: Yt depends on Yt–1 depends on Yt–2, 
etc., and variability will expand as predictions are made further into 
the future (Box et al., 1994).

Prediction is most often confined to the fixed components of a 
model: values of Y are predicted from values of X. For example, for 
goodness-of-fit the procedure is to estimate the regression coeffi-
cients, b̂0 and b̂, and then compute the fitted values of Y from X as 
b̂0J + b̂X. This is not quite as simple as it sounds, because estimation 

F I G U R E  1  Images of covariance matrices V(θ) for (a) spatial (Figure 3), (b) phylogenetic (Figure 4), and (c) temporal statistical models 
(Figure 6). Covariances are depicted on a blue–red scale, with dark blue, white, and dark red corresponding to −1, 0 and 1. For (a), a 6x6 map 
is depicted, with pixels ordered by rows (e.g. rows 1–6 correspond to the first row in the 6x6 map, rows 7–12 correspond to the second 
row in the map, etc.). The covariance between pixels i and j is exp(−dij/ρ). For (b), the phylogeny giving the covariances is the same as that 
in Figure 4b. Rows in (c) give serial autocorrelations (Equation 6); for example, the top row gives the covariance between the value of ε(t) at 
year 1 and later years corresponding to each column. The time-series simulation model (Equation 4) gives cyclic dynamics, so the covariances 
cycle between positive and negative values with increasing time periods between random errors

(a)
Space

(b)
Phylogeny

(c)
Time



4  |   Methods in Ecology and Evolu
on IVES

of b̂0 and b̂ depends on V(θ) and requires the simultaneous estima-
tion of θ. Nonetheless, there are standard statistical tools for this, 
and here I will use maximum likelihood (ML) or restricted maximum 
likelihood (REML). The association of the independent variables with 
prediction is clear from other names for independent variables: ‘pre-
dictor variables’ and ‘explanatory variables’.

It is possible, however, to make better predictions. When the 
random errors are correlated, having estimates of one or more ran-
dom error terms (i.e. the residual errors) makes it possible to esti-
mate the expected value of other random errors. Specifically, the 
expected value of εi conditional on the estimated values of the other 
random errors (and conditional on values of θ) is (Box et al., 1994; 
Fuller, 1996; Petersen & Pedersen, 2012 equation 353) 

where V[i,.] is row i of matrix V(θ), V[−i, −i]−1 is the inverse of V(θ) after 
row i and column i are removed, and Y[−i] and X[−i] denote Y and X 
with element i removed. The term (Y[−i] – (b̂0J + ̂bX[−i])) gives the resid-
ual errors for the observations other than i. Goldberger (1962) shows 
that the predicted random errors from Equation (2) are the best linear 
unbiased estimates (BLUE), thereby providing statistical justification 
for their use. If �̂ denotes the vector containing values of ε̂i, the fitted 
values of the independent variable are Ŷ = b̂0J + b̂X + �̂. This approach 
to predicting values of Y is similar computationally to inverse-distance 
weighting methods used in spatial analyses, in which smoothing is per-
formed based on residual errors weighted by expected covariances 
(Cressie, 1993; Wikle et al., 2019).

I illustrate this approach for predicting the expected values of 
random errors from residual errors for use in goodness-of-fit, inter-
polation and forecasting, pairing these with the spatial, phylogenetic 
and time-series models, respectively. The main point is to show that 
covariances among random errors provide information about the 
data.

	(v)	 Can random errors be causal?

The enterprise of statistics separates the goal of prediction from 
the goal of causal inference (Prosperi et al., 2020; Shmueli, 2010). 
Roughly speaking, these are associated with R2 and p-values respec-
tively. On the extreme prediction side, many artificial intelligence 
algorithms (e.g. for face recognition) focus solely on prediction, and 
the information from the data used by the predictive algorithms is 
often unknown (Athey, 2017). On the extreme causal inference side, 
experimental designs in which treatments are assigned randomly to 
replicates are used to identify independent variables (treatments) 
that cause a response in the dependent variable. Most data and stud-
ies lie between these extremes. Observational data dominate many 
areas of ecology and evolution, and they present the ‘correlation is 
not causation’ challenge. Still, it might be possible to test causal as-
sumptions from observational data if all reasonably expected, ex-
pertly inferred and possibly confounding variables are accounted 
for (Bollen & Pearl, 2013; Granger, 1969; Pearl, 2010). For example, 

structural equation modelling analyses the relationship between Y 
and X by constructing latent variables that confer specific structure 
to the random errors, with that structure based on causal assump-
tions about the processes underlying the data. This intersects with 
the goal of my review of emphasizing that random errors are caused 
by something, although I have described covariances among random 
errors as being generated by ‘unmeasured variables’ to avoid calling 
them ‘latent variables’ and the association with structural equation 
models.

For the review, I have focused on prediction rather than causal 
inference. But this does bring up the following question. In the three 
simulation studies, I make predictions from estimates of the random 
errors (Equation  2). Structural equation modelling contends that, 
if variables and covariances among random errors in a model are 
properly constructed, then a causal hypothesis about the relation-
ship between Y and X can be tested. To draw these two arguments 
together, is it possible to test causal hypotheses using the random 
errors? Some researchers seem to think so: I frequently hear evolu-
tionary biologists say ‘phylogeny caused’ a pattern in their observa-
tional data, yet these phylogenetic patterns are in the random errors. 
I pose this question here and leave my answer for the Discussion.

2  |  SIMUL ATION STUDIES

To illustrate these five points, I use examples of spatial, phylogenetic 
and time-series models, pairing each with applications of prediction: 
goodness-of-fit, interpolation and forecasting. I base each example 
around a real dataset, although I move quickly to simulated data 
which makes it easier to illustrate the five points; for simulations, 
we are omniscient about the processes generating the data. The lit-
erature on analysing data with correlated random errors is huge, and 
my goal is not to be comprehensive. Instead, I present issues that 
have puzzled me and that have likely arisen in analyses that you have 
performed or will in the future.

2.1  |  Space: Goodness-of-fit

My first example can be introduced with the question: Is Alaska 
greener in the south than in the north? It is now possible to ask ques-
tions like this over large areas at high resolution thanks to remote-
sensing satellites (Figure 2). The challenge, however, is that points 
are not independent, and therefore even though a map might con-
tain thousands or millions of pixels, the information available is not 
equivalent to having thousands or millions of independent samples. 
To address patterns of greenness in Alaska while accounting for spa-
tial autocorrelation, Equation  (1) can be used with Y being green-
ness (measured by, e.g. the normalized difference vegetation index, 
NDVI) and X being latitude. To model spatial autocorrelation, σ2V(θ) 
could take different forms, and I will use a simple form in which 
σ2V(θ) has elements vij = σ2[ϕ + (1 − ϕ)exp(−dij/ρ)] where dij is the geo-
graphical distance between locations i and j, and θ = (ρ, ϕ) where ρ is 

(2)ε̂i = V
[

i, .
]

V
[

− i, − i
]−1

(

Y
[

− i
]

−

(

b̂0J + b̂X
[

− i
]

))

,
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the ‘range’ parameter that scales how quickly spatial autocorrelation 
decreases with distance, and ϕ is the ‘nugget’ that gives the propor-
tion of the variance that is local (having no spatial autocorrelation). 
σ2V(θ) can be depicted graphically to show the spatial structure of ε 
(Figure 1a). When applied to the Alaska data (using methods in Ives 
et al., 2021), this model shows a negative relationship between lati-
tude and greenness (b = −0.17), although the statistical support for 
this relationship is not great (p = 0.003) considering the number of 
pixels (31486).

Regressions of Y on X are often conceived in terms of the ef-
fects of X on Y, with X mechanistically driving this effect, while the 
random errors capture a wide range of processes that might have 
complicated effects. In fact, interpreting the meaning of X is not nec-
essarily easier than the meaning of ε. In the case of Alaska (Figure 2), 
although the measurement of latitude is clear, its biological rela-
tionship with greenness is indirect and complex. There are many 
variables affecting greenness that are also related to latitude. For 
example, annual photoperiod is mechanistically tied to latitude, and 
so is the angle of incidence that affects light intensity. Greenness is 
also affected by temperature and precipitation. While temperature 
and precipitation themselves show latitudinal patterns, these pat-
terns are strongly modified by elevation, distance from oceans, etc. 
Furthermore, the effects of temperature and precipitation change 
depending on the time of year; for example, low snowfall in winter 
has different impacts on plants than low rainfall in summer. Even 
if variables such as temperature have strong effects on greenness, 
only variation in the variables that occur along the latitudinal gradi-
ent will be captured by the independent variable X in Equation (1). 
This leaves the variation in all of the variables affecting greenness 

that is not correlated with latitude to be captured in σ2V(θ). Thus, 
the separation between X and ε is not clean, and the real question 
addressed by the regression is: For all of the many variables that 
affect annual greenness in Alaska, how much of the variation they 
cause in greenness can be captured by latitude X and how much can 
be captured by the random errors ε?

To explore the prediction of fitted values when there is spatial 
autocorrelation, I simulated data on a 32 × 32 pixel map with the 
model

when there was a latitudinal gradient (b = −1.5). In contrast to the model 
fit to the data (Equation  1), the simulation model explicitly contains 
an unmeasured variable U that itself is spatially autocorrelated with 
σ2V(θ) = exp(−dij/r), while the simulated random errors γ are indepen-
dent (the correlation matrix I is the identity matrix). Including U empha-
sizes that the random errors have underlying causes, but these causes 
are not known. In the simulations, the strength of spatial autocorrela-
tion in U is zero, weak or strong (r = 0, 0.05 and 0.3, where distance 
is scaled so that each edge of the map has length 1). While there is no 
nugget for U, there is local variation caused by γ (σ2

γ = 0.05). The three 
simulations (Figure 3) were performed with the same sequence of ran-
dom numbers to generate U and γ, making results easier to compare.

When U is not spatially autocorrelated (Figure 3, top row), the 
effect of latitude X on greenness is visually clear, and the hypothe-
sis that b = 0 is rejected (p << 10−10). Goodness-of-fit including the 
estimated random errors (Equation 2) can be assessed with a pre-
diction R2 given by 1 − var(Y − Ŷ)/var(Y) (this is R2

pred discussed in 
Ives, 2019). Even though there is strong statistical support that b < 0, 
the fact that R2 = 0.13 implies low goodness-of fit. With weak and 
strong autocorrelation in U, the statistical significance of the esti-
mate of b drops (p = 0.003 and 0.086 respectively), yet R2 increases 
(R2 = 0.58 and 0.86), and the fitted values clearly capture the pattern 
in greenness (Figure 3, comparing first and second columns). The sig-
nificance of b decreases because the model does not have sufficient 
information to adjudicate between latitude X and unmeasured U as 
explanations of the patterns in Y. Because in the simulation the over-
all patterns caused by U are stronger, statistical confidence in the 
effect of X is lost. This can be seen most clearly in a plot of Y versus 
X with strong autocorrelation (r = 0.3) which partially hides the lin-
ear decrease in Y with X in the simulation (red line). One could argue 
that the solution is to ignore spatial autocorrelation and perform the 
regression as OLS. The cost of this, however, is grossly inflated type 
I errors (false positives); if you simulate the model with b = 0 and 
r = 0.3, and ignore spatial autocorrelation in the regression, 85% of 
the simulations will reject the hypothesis that b = 0 (p < 0.05) even 
though it is true. Although the deterministic relationship between Y 
and X is hidden, however, the correlated random errors make it pos-
sible to predict values of εi from residuals in surrounding pixels using 
Equation (2), giving high R2.

(3)

Y=b0J+bX+U+�

U
∼
N
(

0, �2V(�)
)

�∼N
(

0, �2� I
)

,

F I G U R E  2  Mean annual greenness (normalized difference 
vegetation index, NDVI) for Alaska west of –141° longitude, 1982–
2015, from the NDVI3g dataset derived from the AVHRR sensor 
(Ives et al., 2021). Values range from 0.09 (light green) to 17.22 
(dark green), and pixels with insufficient reflectance to calculate 
NDVI (e.g. water bodies, permanent snow) are masked white
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Comparing predictions of Y using X to predictions of Y from the 
residuals in surrounding pixels might not seem fair, because values of 
X give additional information about the data Y—the relationship be-
tween Y and X—whereas using surrounding residuals just describes 
the pattern. However, in the simulation model the spatial autocor-
relation is caused by U, and therefore making predictions using V(θ) 
is just an attempt to infer the value of U in a pixel. This inference of U 
is not perfect; if we knew the values of U and used them in a regres-
sion model along with X to predict Y, then our R2 would be 0.95 in all 
three of the simulation examples. The best we managed to do with 
strong autocorrelation was R2 = 0.86. Still, that is not bad.

A common diagnostic used for spatial data is to compute a semi-
variogram for the residuals. Not surprisingly from the simulated data 
(Figure 3), semivariograms when U is autocorrelated (r = 0.05 and 

0.3) show clear autocorrelation in the residual errors (Supporting 
Information Figure S1). This diagnostic, however, is not helpful; for 
example, if a semivariogram were used to select pixels sufficiently 
distant so that there is little remaining autocorrelation (correlation 
<0.05), only about 80 pixels would remain for analysing the Alaska 
dataset (Figure  2), and the coefficient for latitude would not be 
significant. Therefore, a statistical model that explicitly accounts 
for spatial autocorrelation is needed from the start (Cressie, 1993; 
Dormann et al., 2007; Legendre, 1993).

This example illustrates the limits that independent variables 
may have in ‘explaining the data’, even when good predictions can 
be made using the residual errors. The model can even be used (via 
a likelihood ratio test) to assign a p-value to the hypothesis that 
the random errors are not correlated (ϕ = 1 and/or ρ = 0); for the 

F I G U R E  3  Simulation examples of a spatial process in which response variable Y depends on latitude X, an unmeasured variable U 
that may be spatially autocorrelated, and independent random error γ (Equation 3). Three simulations with the same sequence of random 
numbers were run with different strengths of spatial autocorrelation in U: none (r = 0), weak (r = 0.05) and strong (r = 0.3) in rows from top 
to bottom. Panels in the first column give the simulated data Y. Panels in the second column give the predictions of Ŷ = b̂0 + b̂X + �̂ from 
Equation (2) that use information about the covariance among random errors. Panels in the third column give the relationship between Y 
and X, with the expectations that depend on the values of X (i.e. b0 + b1X) given by red lines. In an appropriate GLS analysis (Equation 1), the 
fitted slopes have higher p-values with increasing spatial autocorrelation (p << 10−10, 0.003 and 0.086 respectively). Panels in the fourth 
column give the relationship between Y and Ŷ predicted using Equation (2), and the corresponding values of R2 are 0.13, 0.58 and 0.86. 
Other parameter values for the simulations are b0 = 0, b = −1.5, σ2 = 1 and σ2

γ = 0.05
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cases r = 0, 0.05, and 0.3, these are p = 0.44 (χ2
2 = 1.6), p << 10−10 

(χ2
2  =  578) and p << 10−10 (χ2

2  =  1,716). Although calculating p-
values is often associated with causal inference, here I am only using 
p-values to give evidence for the existence of correlation among 
random errors that depends on the distance between points. If iden-
tifying explanatory independent variables were the only goal, au-
tocorrelation would be a nuisance. However, a broader view would 
include autocorrelation as part of the explanation.

2.2  |  Phylogenies: Interpolation

In a classic study of social organization, Jarman  (1974) sorted 75 
species of African antelope according to such characteristics as 
feeding behaviour, diet, response to predators, body weight and 
habitat. While acknowledging that the causal relationships among 
these characteristics are impossible to know, he nonetheless de-
scribes how it is possible to explain these relationships in terms of 
constraints (‘appropriate strategies’) imposed by the needs of indi-
viduals to feed and survive the risk of predation. One relationship 
is between the antipredator strategies of antelope and their group 
size (Figure 4a). Antelope can be divided into those that freeze or 
hide when they fear predation and those that flee or fight. Antelope 
that hide occur in smaller groups than those that flee/fight. This re-
lationship makes sense, because the antipredator strategy of hiding 
is harder in large groups, and fleeing and fighting are more effective 
if larger groups more easily evade predators (such as the ‘explosive 
herd’ flight behaviour of impala) or put up a communal defence (such 
as water buffalo). Nonetheless, numerous other characteristics cor-
relate with group size, including body size and feeding mode (brows-
ing vs. grazing). These other characteristics likely show phylogenetic 
correlations (or ‘phylogenetic signal’ sensu Blomberg et al.,  2003); 
for example, phylogenetically related species are more likely to 
share similar body sizes. Therefore, when analysing the relation-
ship between antipredator strategy and group size (Figure 4a), it is 
appropriate to consider the phylogenetic relationships among spe-
cies (Brashares et al., 2000; Felsenstein, 1985; Garland et al., 1992; 
Harvey & Pagel, 1991).

A regression of group size on antipredator behaviour can be per-
formed using Equation (1) with Y containing group size and X con-
taining the categories ‘hide’ versus ‘flee/fight’. The only difference 
between this application to phylogenetic data and that used for spa-
tial data is the structure of the covariance σ2V(θ), which captures the 
hypothesized covariances among species depending on their degree 
of relatedness (Figure 1b). To model phylogenetic relatedness, sen-
sible hypotheses for σ2V(θ) can be derived from phenomenological 
models of evolution in which species trait values diverge along a phy-
logenetic tree; the more distant the common ancestor on the tree, 
the more divergence is likely to have occurred (Felsenstein, 1985). 
Including a parameter θ in σ2V(θ) can give a measure of phylogenetic 
signal in terms of the overall magnitude of covariances between spe-
cies (Freckleton et al., 2002; Grafen, 1989; Hansen & Martins, 1996); 
for example, θ could be Pagel's λ that equals one if the covariances 

among species reflect Brownian motion evolution up the phylogeny 
and zero if there is no phylogenetic signal (Pagel, 1997). When ap-
plied to the Jarman  (1974) data (Figure  4a), there is a strong rela-
tionship between antipredator strategy and log group size (b = 0.34, 
p = 0.0004) and strong phylogenetic signal (λ = 0.92).

I performed simulations designed from the data of Jarman (1974) 
for 32 species showing a balanced branching phylogeny (Figure 4b). 
The simulations include an unmeasured variable U that has phyloge-
netic signal and an additional random error term γ that is indepen-
dent among species (Equation 3). In simulation A, the antipredator 
strategy X is split between the two major clades, whereas in sim-
ulation B the antipredator strategy alternates between closest rel-
atives; in both simulations, the unmeasured variable U is the same.

How well can the statistical model (Equation 1) identify a rela-
tionship between group size Y and antipredator strategy X? An anal-
ysis of the particular simulations in figure 4b gives a nonsignificant 
(p  =  0.15) coefficient of antipredator behaviour on group size for 
simulation A, even though an OLS regression that ignores phylogeny 
gives a highly significant effect (p = 10−8). This type of finding—that 
phylogeny ‘reduces the power’ of statistical tests—is common, al-
though interpreting this as reduced power is incorrect, because the 

F I G U R E  4  (a) Phylogenetic relationship of 75 species 
of African antelope from Jarman (1974), with antipredator 
behaviour (white = hide, black = fight/flight) and group size (1–50 
corresponding to yellow - red) (data in Ives & Garland, 2010). (b) For 
a balanced phylogeny of 32 species, two sets of simulated values of 
group size (yellow - red) when antipredator behaviour is distributed 
according to the two major clades (simulation A) and alternating 
between close relatives (simulation B). Group size also depends on 
a third unmeasured valuable U (grey scale) that has phylogenetic 
signal (λ = 1)

(a) (b)
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high power implied by OLS regression never really existed. We can 
understand the low power to detect an effect of antipredator strat-
egy by performing an OLS regression now including the values of U 
(since in the simulation we know what they are). With the inclusion 
of U, the effect of X is significant (p  =  0.00003). The reason X is 
not significant when U was unknown is because U and X are highly 
correlated (−0.68). This correlation arose because X by design dif-
fered between clades and U was simulated with phylogenetic signal. 
Because X and U, and hence ε, were correlated, it is impossible to 
statistically identify the variation in Y that can properly be attributed 
to X. This type of issue will arise whenever X itself has phylogenetic 
signal as well as the random errors ε.

Simulation B shows the opposite situation in which X has anti-
phylogenetic signal in which phylogenetically closely related species 
are less likely to share the same value of X. In this case, the coef-
ficient for antipredator strategy on group size is highly significant 
(p = 0.00006) even though an OLS regression ignoring phylogeny 
gives a marginally nonsignificant effect (p = 0.051). In simulation B, 
the values of X and U are very weakly correlated (0.04), so phyloge-
netic signal in the residual errors of Y does not absorb the effects of 
variation in X.

The problems illustrated by the simulations for OLS regression—
inflated type I error rates (false positives, simulation A) and the inabil-
ity to identify patterns (loss of power, simulation B)—arise whenever 
an independent variable is correlated with the random errors. One of 
the basic assumptions of OLS regression is the exogeneity assump-
tion, which states that the independent variable is uncorrelated with 
the random errors (Judge et al., 1985). The exogeneity assumption is 
violated in the phylogenetic simulations. In the simulations, we know 
when this is a problem, because we know the values of U underly-
ing the covariance among random errors. This is not the case with 
real data, and it is only possible to diagnose this problem using a hy-
pothesis for the covariances among ε. This hypothesis is embodied 
in σ2V(θ), so it makes sense to include σ2V(θ) in the analyses from the 
start and not worry about diagnostics.

For prediction, I will consider the task of predicting the value 
of log group size Yh for a new species h with antipredator strategy 
Xh. I simulated data for 32 species, removed one of the species, fit 
the model (Equation 1) to the data from the remaining 31 species, 
and then predicted the value of Yh for the species that had been 
removed, Ŷh = b̂0J + b̂Xh + �̂h (Equation 2). To assess the predictions, 

I used a prediction R2 = 1 − (Yh − Ŷh)2/var(Y), where var(Y) is the vari-
ance of the simulated log group sizes for the 31 species used to make 
the predictions Ŷh. In application to a single dataset, there is only a 
single predicted value, and this measure of prediction accuracy can 
still be applied because it compares the squared difference between 
observation and prediction with the expectation of this squared dif-
ference across the remainder of the dataset.

For 1000 simulated datasets, the prediction R2 was similar re-
gardless of the distribution of X on the phylogeny (Table  1). This 
prediction R2, however, was not as high as what could be achieved 
if U were known for all species. A curious result occurs when com-
paring predictions made using OLS regression. In this case, the pre-
diction R2 from Xh when X is divided between the two main clades 
(simulation A) is 0.33 averaged among replicates, even though the 
estimate of b was rarely significant (Table 1). This occurred because 
even though b was not significant, b̂Xh nonetheless captured vari-
ation in Y that was caused by U: in the simulations, the effect of U 
on Y was stronger than the effect of X on Y, and because X was cor-
related with U, values of X predicted values of Y. In contrast, when 
values of X alternated between closest relatives (simulation B), the 
average prediction R2 from Xh alone was 0.07, yet the estimate of b 
was significant in 99% of the simulations (Table 1). Thus, comparing 
simulations A and B, being able to detect a significant effect of an in-
dependent variable gives misleading information about the ability to 
make predictions from it. These conclusions hold for other measures 
of prediction accuracy (Supporting Information Table S1).

These simulations give two general lessons. First, in regression 
models with correlated random errors, the distribution of X among 
samples makes a difference. For OLS regression, this is not the case 
(Neter et al., 1989). A very common finding is that a model justifiably 
containing covariances in the random errors gives higher p-values 
(‘less significance’) for the regression coefficients than incorrectly 
applied OLS regression. Nonetheless, this is not a rule, and you can 
find that the covariance structure increases your power to identify 
significant regression coefficients. Second, if you make predictions 
using all of the information in a dataset—including both independent 
variables and σ2V(θ)—then the accuracy of the predictions may be 
independent of your ability to detect significant regression coeffi-
cients. In both simulations A and B, the model had similar predic-
tion accuracies for new values Yh (Table 1, Table S1), and therefore 
the data contain the same total amount of information that can be 

TA B L E  1  Prediction R2 for the values of Yh (group size) given Xh (antipredator strategy) for one of 32 species in balanced phylogenies 
(Figure 4b). Simulations were performed in which the distribution of X was either divided between the two main clades (simulation A) or 
alternated between closest relatives (simulation B). In addition to predictions using both values of Xh and phylogenetic relationship among 
species (Equation 2) given by R2, predictions were made using values of U and using OLS without information about U. Listed values of R2 for 
all three types of predictions are the mean from 1000 simulations. Mean values of the estimates of phylogenetic signal (Pagel's λ) and b are 
also presented, along with the median p -value for the significance of b and the percentage of p -values < 0.05. See also Table S1

Distribution of X R2 R2 (U known) R2 (OLS) λ b
Median 
p(H0:b = 0)

Percent 
p < 0.05

A. two clades 0.61 0.81 0.33 0.70 0.64 0.29 25%

B. alternating 0.65 0.82 0.07 0.84 0.60 0.00008 99%
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used to make predictions. However, this information is apportioned 
differently between mean and variance components of the fitted 
regression models. As Ted Garland wrote, “Thus, what phylogeny 
taketh away, phylogeny giveth back, at least with proper statistical 
methods” (Garland & Ives, 2000).

The key to understanding phylogenetic regression is interpreting 
the random error terms as being underlain by unmeasured traits that 
themselves have phylogenetic signal (Felsenstein,  1985). Random 
errors are caused by something. Even when no observable traits can 
be associated with the random errors, unmeasured traits can include 
such things as genomic architecture. Genomic architecture will show 
phylogenetic signal and also affect the expression of macroscopic 
traits, and hence may generate phylogenetic signal in the random 
errors.

2.3  |  Time series: Forecasting

As an example time series, consider the iconic hare–lynx population 
cycles, a mainstay in ecology textbooks (Odum & Barrett,  1971). 
The remarkable hare–lynx dataset comes from the Hudson's Bay 
Company that recorded the purchases of hare and lynx pelts from 

Canada from 1845 to 1935 (Figure 5). Although this dataset is often 
presented as an example of a ‘simple’ predator–prey cycle, the real 
situation is more complex (Krebs et al., 2017). For this example, how-
ever, I will ignore the real complexities to allow a simple model of 
predator–prey interactions.

To simulate predator–prey dynamics, I used a version of the 
Lotka–Volterra equations in discrete time,

where Z1(t) and Z2(t) are the abundances of prey and predator in year 
t, coefficients cij govern their intraspecific and interspecific interac-
tions, h is a measure of the ‘handling time’ that makes the predation 
rate depend on prey density, and α1(t) and α2(t) are normal random 
errors with mean zero and variance σ2 that are assumed to be inde-
pendent of each other and through time. This is a nonlinear equa-
tion, and in the absence of any stochasticity (σ2 = 0), it can give two 
qualitatively different dynamical patterns depending on parameter 
values. One pattern is stable limit cycles in which the cycles per-
sist indefinitely, and the other is damped oscillations in which the 
cycle amplitude diminishes through time and population abundances 

(4)
Z1(t)=Z1(t)exp

[

c10−c11Z1(t−1)+c12Z2(t−1)
(

1−hZ1(t−1)
)

+�1(t)
]

Z2(t)=Z2(t)exp
[

c21Z1(t−1)
(

1−hZ1(t−1)
)

−c22Z2(t−1)+�2(t)
]

,

F I G U R E  5  Abundances of snowshoe 
hare and lynx from pelts collected by 
the Hudson's Bay Company, 1845–
1935 (Deng, 2018). The lower four 
panels illustrate simulations showing 
stable limit cycles (c10 = 2) and damped 
oscillations (c10 = 1.5) from different 
parameterizations of Equation (4). 
The upper panels with σ2 = 0 have no 
random errors to show the deterministic 
dynamics, while the lower panels show 
the stochastic dynamics as analysed 
for Figure 6 and Table 2 (σ2 = 0.0025 
and 0.01 for limit cycles and damped 
oscillations). Other parameters are 
c12 = −6, c11 = c21 = c22 = 1, and h = 0.4
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approach single points (Figure 5). In deterministic ecological theory, 
these two patterns are fundamentally different, yet when stochas-
ticity is added (σ2 > 0) the dynamics are similar to the eye (Figure 5), 
because the stochasticity perpetuates the damped oscillations to 
create quasi-cyclic dynamics.

For fitting simulated data, I am going to take two conceptual 
leaps. First, although the data are generated by a nonlinear simu-
lation, I am going to use a linear model. Linear statistical models 
are easier to fit than nonlinear ones, and therefore the resulting 
forecasts might be more robust. Second, I am going to fit only data 
from the prey. Ecological systems are always multidimensional, 
involving interactions between numerous components of ecosys-
tems. However, we never have data on everything. An important 
result from theory is that the dynamics caused by interacting mul-
tidimensional processes leave fingerprints on the dynamics of any 
one variable. Formally, the information that resides in time-lags in 
the dynamics of any one variable is sufficient to reconstruct the 
dynamics of the whole multidimensional system for both deter-
ministic (‘Taken's theorem’, Takens, 1981) and stochastic systems 
(Stark et al., 2003).

After a little algebra, a 2D linear model that approximates 
Equation  (4) can be recast as a 1D linear model with a time delay 
(Abbott et al., 2009),

where Y(t) is the log abundance of prey. Thus, linear predator–prey 
interactions give rise to a 1D linear model with two time-lags in Y(t) 
and one time-lag in η(t) given by the moving average term dη(t–1); 
Equation (5) is an autoregressive-moving average process, ARMA(2,1) 
(Box et al., 1994). A little more algebra turns Equation (5) into (Ives & 
Zhu, 2006).

This is the same model as used for the spatial and phylogenetic exam-
ples (Equation 1), but without independent variable X. All of the dy-
namics are captured in σ2V(θ), which contains the covariances between 
Y(t) and Y(t–s) separated by s years. These covariances cycle between 
positive and negative values reflecting the cyclicity of the dynamics 
(Figure 1c).

It might seem odd that a time-series model (Equation 5) that 
appears to have independent variables can nonetheless be ex-
pressed in terms of a covariance matrix σ2V(θ) (Equation 6). This 
might seem less odd when considering that the apparent indepen-
dent variables Y(t–1) and Y(t–2) are themselves determined from 
prior observations, and therefore Y(t–1) and Y(t–2) are themselves 
random variables.

I simulated 70 years of data using parameter values that produce 
either stable limit cycles or damped oscillations, and then forecast 
the abundance of prey for 30 years. When the dynamics show stable 
limit cycles, the forecasts from the linear 1D model are better than 

when the dynamics show damped oscillations (Figure  6a,b). This 
contrast is due to the uncertainty caused by the random errors ε(t), 
rather than the uncertainty in parameter estimates: the uncertainty 
in the forecasts caused by only the random errors is shown in green, 
while the total uncertainty is shown in blue (Figure 6a,b). Stable limit 
cycles impose more regular structure onto the time series, and this 
gives more information for forecasting in contrast to the case with 
quasi-cycles. This underscores that even though the ability to make 
forecasts can be improved with better statistical models, some real-
world systems will be inherently difficult to predict, simply because 
there is little signal generated by the processes underlying the data, 
as in the case of quasi-cycles.

I also statistically fit the data to the same nonlinear 2D model 
that produced the data (Figure 6c,d). To compare the forecasts of 
the two fitted models, I applied them to 1000 simulations for param-
eter values giving either limit cycles or damped oscillations (Table 2). 
The nonlinear 2D and linear 1D models had similar accuracies when 
the dynamics showed stable cycles. However, the nonlinear 2D 
model was outperformed by the linear 1D model when the dynam-
ics showed damped oscillations. In fact, the average prediction R2s 
for the nonlinear 2D model were negative for forecasts of 20 and 
30 years (Table 2), implying that simply forecasting the mean prey 
abundance would have been more accurate. Given the different 
performances of linear and nonlinear models for making forecasts 
depending on whether the data showed limit cycles or damped oscil-
lations, it would be useful to have diagnostics to distinguish the two. 
A standard diagnostic for time-series models, computing the auto-
correlation among residuals, failed to show any difference between 
the time series (Supporting Information Figure S2), and a standard 
diagnostic for detecting nonlinear dynamics (Brock et al.,  1996) 
failed to reject the hypothesis that the dynamics are linear for 
both simulations. Therefore, diagnostics do not help to determine 
whether dynamics are linear or not.

I want to highlight two lessons from this simulation study. First, 
even though variables are not measured, they may leave their im-
print on the random errors. In the spatial and phylogenetic sim-
ulations, I used unmeasured variables to generate spatial and 
phylogenetic covariances. In the time-series example, even if infor-
mation about predator abundances is unknown, the signature cyclic-
ity of predator–prey interactions is still left on the prey abundances, 
and this creates covariances among random errors that can be used 
for forecasts. Second, while it is important to use a statistical model 
that can fit the data well, sometimes even a simple linear model can 
fit the data well enough to make good predictions. Here, a simple 
1D linear model could outperform the 2D nonlinear model that was 
used to simulate the data. The surprisingly good performance of 
the linear 1D model occurs when the prey dynamics show damped 
oscillations, dynamics that linear models are capable of mimicking. 
Therefore, the performance of a linear statistical model fit to data 
generated by nonlinear processes does not so much depend on the 
nonlinearities underlying the processes but instead on whether the 
qualitative form of the dynamics (e.g. limit cycles vs. damped oscilla-
tions) can be mimicked by a linear model.

(5)Y(t) = b0 + b1Y(t − 1) + b2Y(t − 2) + �(t) + d�(t − 1),

(6)
Y=b0J+�

�∼N
(

0, �2V(�)
)

.
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3  |  DISCUSSION

The five points that centre this review are illustrated in different 
ways by the three simulation studies involving spatial, phylogenetic 
and time-series data. The points are scattered throughout the simu-
lation studies, so here I gather the results around the five points.

	(i)	 Correlated random errors unite many types of statistical models, 
including spatial, phylogenetic and time-series models.

The three simulation studies all used the same GLS approach, 
with specific models differing only in the form of the covariance 
matrix of random errors (Figure 1). To allow this comparison among 
spatial, phylogenetic and time-series data, I have restricted the 
analyses to linear Gaussian models (Equation 1). Generalized linear 
models (GLMs) are designed for non-Gaussian data (McCullagh & 
Nelder, 1989), and they can be extended to generalized linear mixed 
models (GLMMs) that also allow covariances among random errors 

F I G U R E  6  Forecasts from 70 years of data from the simulation model in Equation (4) for parameterizations showing (a, c) limit cycles 
and (b, d) damped oscillations. (a, b) The linear 1D model (Equation 6) was fit to only the prey data (black points), while (c, d) the nonlinear 
2D model (Equation 4) was fit to both prey (black points) and predator (red points) data. Forecasts are given as solid blue lines with ±1 SD in 
the blue regions; the continuing black line gives simulated values that are being forecast. For the linear 1D model, forecasts are also given 
without accounting for parameter uncertainty by the green region
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TA B L E  2  Prediction R2 for forecasts of prey abundance from 
70 years of data simulated from a nonlinear predator–prey model. 
Forecasts for 5, 10, 20 and 30 years were made using a linear 1D 
model (Equation 6) and the nonlinear 2D model used to simulate 
the data (Equation 4). Values of the prediction R2 are scaled so that 
when they are zero, the predictions are as accurate as using the 
mean prey abundance as the forecast. Values of R2 are the averages 
from 1000 simulations

Dynamics Years R2 (linear 1D) R2 (nonlinear 2D)

Limit cycles 5 0.81 0.88

10 0.78 0.75

20 0.47 0.46

30 0.30 0.26

Damped 
oscillations

5 0.60 0.44

10 0.50 0.12

20 0.44 −0.08

30 0.34 −0.13
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(Gelman & Hill, 2007). The details differ between GLMMs and GLS, 
but just as for GLS, GLMMs can be applied to spatial, phylogenetic 
and time-series data. More-complex models, both frequentist and 
Bayesian, can similarly be applied to different types of correlated 
data by the careful specification of covariance matrices for the 
random effects. The fact that spatial, phylogenetic and time-series 
models differ only in how random errors covary shows the value in 
understanding how covariance matrices are constructed and anal-
ysed in statistical models.

	(ii)	 Random errors are neither unpredictable nor mistakes.

If random errors are correlated, then they are likely affected by 
some real but unmeasured variable. In some cases, these unmea-
sured variables might really be nuisances, such as measurement er-
rors that are systematically biased and generate correlated random 
errors. Most often, however, the unmeasured variables have real 
biological effects on the dependent variable. This means that the 
random errors contain useful information. I am not arguing that the 
random errors should necessarily be the focus of study. However, 
correlation among random errors should be carefully considered for 
the information it might give. For example, if you perform an analy-
sis that includes correlated errors, the estimates for the covariance 
matrix should always be reported. It might also be useful to report R2 
values for models without and with correlated random errors fitted 
to the same data so that the information content from the indepen-
dent variables can be compared to that available from unmeasured 
variables (e.g. Table 1). I do not want to disguise the fact that there 
are technical issues in defining an R2 for models with correlated ran-
dom errors (Kvalseth, 1985), but R2s can still be useful (Ives, 2019).

	(iii)	Diagnostics for the randomness of random errors are not useful, 
but simulations are.

When there are reasons to suspect that random errors are cor-
related, it makes sense to skip diagnostics and start with statistical 
models that explicitly incorporate hypotheses about how the random 
errors are correlated. Diagnostics might only serve to identify the 
obvious (such as spatial autocorrelation in the greenness of Alaska, 
Figure 3, Figure S1) or fail to identify properties of the data that are 
important (such as nonlinearities in time series, Figure 6, Figure S2). 
In the GLS regression in Equation (1), σ2V(θ) contains parameters θ 
that govern the pattern and strength of covariances among random 
errors, and statistical tests of θ (e.g. whether ϕ = 1 and/or ρ = 0 in 
the spatial model, and whether λ = 0 in the phylogenetic model) will 
tell whether the assumption of zero covariances among random er-
rors can be rejected. I emphasize that σ2V(θ) should be treated as a 
hypothesis. Furthermore, there are different ways in which σ2V(θ) 
can be formulated (e.g. different spatial functions and different 
phylogenetic transforms), and these can be competed against each 
other to select the one that fits the data best (e.g. using likelihoods).

The simulations illustrate the importance of incorporating 
correlation among random errors. When analysing real datasets, 

simulations can also be used to assess the performance of the sta-
tistical model. Models with correlated random errors can have poor 
statistical properties, such as bias and inflated type I errors, for small 
datasets, where ‘small’ might be several hundred data points. The 
best way to identify these problems is to fit a model to data, simulate 
data from the model, and then refit the simulated data to test, for 
example, the type I error rates; I recommend this for any statistical 
model beyond OLS (Ives, 2018b).

	(iv)	Model predictions can be made with random errors.

I have emphasized that predictions can be made from covari-
ances among random errors just as from independent variables. 
Conceptually, this is justified by recognizing that covariances among 
random errors are generally caused by unmeasured variables. 
Practically, this involves data smoothing in which the predicted value 
of a random error for a given data point is calculated as the weighted 
average of residual errors from the other data points, where the 
weights depend on the estimated covariances among random errors 
(Equation 2). Interpreting predictions from covariances among ran-
dom errors as a smoothing technique de-mystifies the process. It 
also points to a difference between predictions from the covariances 
among random errors and predictions from independent variables. 
Suppose you fit a spatial model with no independent variables to 
data from Alaska (Figure 2) and the model has a high R2. This model, 
however, would give no information to predict the level of greenness 
elsewhere in the world. In contrast, if latitude were included and had 
an effect on greenness in Alaska, it might be expected to have a sim-
ilar effect in northern Canada or Eurasia. A fundamental difference 
between predictions from independent variables and predictions 
from covariances among random errors is that the latter are nec-
essarily local in scope: they are based on smoothing residual errors, 
and therefore the predictions can only be made for points that are 
close enough in data space to have correlated random errors.

For many types of data and questions, I do not see the limited 
scope of predictions from correlated random errors as a large hin-
drance, because the same limitations likely apply to the independent 
variables as well. For example, I would be sceptical that a statistically 
significant effect of latitude on greenness in Alaska implies a similar 
relationship between latitude and greenness in northern Canada or 
Eurasia, because greenness depends on many variables that are cap-
tured at most crudely by latitude, if at all. Latitude does not ‘cause’ 
greenness in a direct sense, and therefore any inference about the 
association of greenness with latitude might be local in scope just as 
inference made from covariances among random errors.

	(v)	 Can random errors be causal?

I asked this question to address two issues about interpreting 
random errors as being caused by something. First, it is not uncom-
mon to hear researchers talk about random errors as causes, such 
as evolutionary biologists talking about patterns ‘caused by phylog-
eny’. Similarly, Tobler's First Law of Geography states “everything 
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is related to everything else, but near things are more related than 
distant things” (Tobler, 1970). Tobler's ‘Law’, however, is not a causal 
law of nature, but is instead an empirical pattern that is commonly 
observed (Miller,  2004). Similarly, describing phylogeny as causal 
is a convenient shorthand for saying that there are many unmea-
sured variables that themselves could generate patterns in data that 
reflect phylogenetic associations. While it is important to be clear 
when interpreting the results of specific analyses of specific data-
sets about what can logically be inferred, I do not think it is neces-
sary to be dogmatic in banning colloquial use of the word ‘cause’; if a 
relationship between Y and X is statistically significant, I do not think 
we should exorcize anybody who, out of convenience, refers to ‘the 
effect of X on Y’ or even says ‘X causes Y’.

The second reason I have asked this question is concern that 
my championing of random errors as representing unmeasured 
variables will throw this review into the debate about statistics 
and causation (Bollen & Pearl,  2013). It should not. I personally 
think the issue of causation has much more to do with the data 
than the statistical methods used to analyse them. For example, 
scientists would probably agree that the most convincing way to 
show causation is to perform an experiment in which levels of X 
are randomly assigned to many replicates. Suppose I performed a 
highly replicated, well-controlled, randomized experiment in the 
field to show that natural enemies have a large negative impact 
on pea aphid pests in lucerne (alfalfa) fields. I conclude that natu-
ral enemies caused a reduction in pea aphid population growth at 
the field site and during the weeks I performed the experiment. 
However, this conclusion does not mean that, if I were to do the 
same experiment at a different site or at the same site in a dif-
ferent year, I would get the same result (Ives,  2018a). My point 
is that even though knowing causal relationships is useful and 
good justification for doing experiments, causal relationships may 
have limited scope and predictive power in ecology and evolution. 
Demonstrating a causal relationship is a far cry from demonstrat-
ing a ‘law of nature’.

The point of statistics is to better understand data, and scientific 
inference depends on the correct coupling of data and appropriate 
analyses. Regardless of the specific scientific inferences you hope to 
draw from your data, I suspect that careful consideration of random 
errors will be informative. Data are hard won, and statistics should 
be used to make the most of them.
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