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Abstract.—Many researchers want to report an R2 to measure the variance explained by a model. When the model includes
correlation among data, such as phylogenetic models and mixed models, defining an R2 faces two conceptual problems.
(i) It is unclear how to measure the variance explained by predictor (independent) variables when the model contains
covariances. (ii) Researchers may want the R2 to include the variance explained by the covariances by asking questions
such as “How much of the data is explained by phylogeny?” Here, I investigated three R2s for phylogenetic and mixed
models. R2

resid is an extension of the ordinary least-squares R2 that weights residuals by variances and covariances estimated
by the model; it is closely related to R2

glmm presented by Nakagawa and Schielzeth (2013. A general and simple method for

obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4:133–142). R2
pred is based on predicting each

residual from the fitted model and computing the variance between observed and predicted values. R2
lik is based on the

likelihood of fitted models, and therefore, reflects the amount of information that the models contain. These three R2s are
formulated as partial R2s, making it possible to compare the contributions of predictor variables and variance components
(phylogenetic signal and random effects) to the fit of models. Because partial R2s compare a full model with a reduced
model without components of the full model, they are distinct from marginal R2s that partition additive components of
the variance. I assessed the properties of the R2s for phylogenetic models using simulations for continuous and binary
response data (phylogenetic generalized least squares and phylogenetic logistic regression). Because the R2s are designed
broadly for any model for correlated data, I also compared R2s for linear mixed models and generalized linear mixed models.
R2

resid, R2
pred, and R2

lik all have similar performance in describing the variance explained by different components of models.

However, R2
pred gives the most direct answer to the question of how much variance in the data is explained by a model.

R2
resid is most appropriate for comparing models fit to different data sets, because it does not depend on sample sizes. And

R2
lik is most appropriate to assess the importance of different components within the same model applied to the same data,

because it is most closely associated with statistical significance tests. [Binomial regression; coefficient of determination;
non-independent residuals; phylogenetic model; pseudo-likelihood.]

Researchers often want to calculate a coefficient of
determination, an R2, to give a measure of the amount of
variance in their data explained by a statistical model. For
ordinary least-squares models (OLS), such as regression
and analysis of variance (ANOVA), the R2 is simple to
calculate and interpret. Many types of models, how-
ever, assume that the errors among response variables
are correlated. Phylogenetic generalized least squares
models (PGLS) allow the possibility of phylogenetically
related species being more similar to each other, leading
to phylogenetic correlations in the errors (Felsenstein,
1985; Garland et al., 1992; Martins and Hansen, 1997).
PGLS models are structurally similar to linear mixed
models (LMMs) that include random effects to account
for correlations in the residual variation; for example,
LMMs can account for correlation between residuals of
experimental replicates within the same block (Gelman
and Hill, 2007; Bolker et al., 2009). Interpretation of
an R2 for models for discrete response variables, such
as phylogenetic logistic regression models and gener-
alized linear mixed models (GLMMs), adds a second
complexity. Even a perfectly fitting model will have
residual variation due to the discreteness of the data,
which raises the question of how to formulate an R2

when the variance in the data can never be completely
explained.

Formally, correlated errors in statistical models for
continuous or discrete data cause two issues for defining
an R2. The first involves assessing the goodness-of-
fit of predictor variables (fixed effects) in terms of
the explained variance. For standard OLS models, the
errors are assumed to be identical and independently
distributed, and therefore, the variance in the residuals
can be calculated directly to give the total variance that
is not explained by the model. In models for correlated
data, however, the errors are not independently distrib-
uted. Therefore, to calculate the “unexplained variance”
given by the residuals, it is necessary to deal with
the covariances among errors; applying the OLS R2 to
estimates from a model with covariances among errors
gives values that are bounded below by −∞ rather than
zero (Judge et al., 1985, p. 32).

The second issue for defining an R2 involves assessing
the goodness-of-fit of the covariances (random effects)
estimated in the model. For phylogenetic models, this
is embodied by the question “How much of the data
is explained by phylogeny?” The difficulty is that a
phylogenetic model can be used to estimate the strength
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of phylogenetic signal (the magnitude of the covariances)
in the errors, but the phylogenetic signal does not directly
quantify the proportion of the total (rather than residual)
variance explained. For example, in PGLS Pagel’s �
branch-length transform (Pagel, 1997; Housworth et al.,
2004) partitions the variance of the residuals into
phylogenetic and non-phylogenetic parts; this is similar
to LMMs that partition variances into random effects and
residuals. In contrast, in OLS the R2 partitions the total
variance in Y into that part explained by the predictor
variables (fixed effects) and the residual variation. It
is not immediately clear what it means in PGLS for a
phylogeny to “explain” the total variance of the data in
a way comparable to the predictor variables in OLS.

Here, I assess three R2s for models that specify
non-zero covariances among errors. Although these
definitions of R2s are broad enough to encompass any
model specifying an error covariance matrix, I will focus
on application to phylogenetic models for continuous
(PGLS) and binary (PGLMM) data. In addition, I will
compare the properties of the R2s applied to phylogen-
etic data to the properties of the R2s applied to mixed
models. This comparison shows the generalizability of
the R2s, and validates the R2s as viable measures of
goodness-of-fit for to a broad class of models. This is
important, because R2s should make it possible to assess
and compare as wide a range of models as possible
(Kvalseth, 1985).

The three R2s are designed as partial R2s that compare
a full model with a reduced model in which one or more
of the parameters are removed; partial R2s measure the
explained variance that is lost when the full model is
reduced. The overall R2s are obtained by comparing the
full model to the simplest reduced model in which there
is only an intercept and the residuals are independent.
Partial R2s have the advantage of making it possible
to ask about the contribution of a single or subset
of components to the fit of a model. This makes it
possible to exclude coefficients in a model that are
not of explicit interest; for example, many phylogenetic
models for species traits include body size as one of the
predictor variables to factor out body size, and partial
R2s make it possible to assess the goodness-of-fit for the
remaining predictor variables. By comparing a model
with a phylogeny to a model without, partial R2s also
make it possible to answer the question “How much of
the data is explained by phylogeny?”

R2s can be assessed on multiple grounds (Kvalseth,
1985), and here I use three. First, does the R2 give a good
measure-of-fit of a model to data? To serve as a basis
for assessment, I use the log-likelihood ratio (LLR) of
the full and reduced models. The LLR approaches a �2

distribution for large samples and is therefore used for
hypothesis tests of full versus reduce models (Judge et al.,
1985). Also, the LLR is linearly related to the Akaike’s
Information Criterion (AIC) and other measures used
for model selection (Burnham and Anderson, 2002).

Therefore, the LLR is a natural choice to assess R2s: a
good R2 should be monotonically related to the LLR.
Second, can the R2 identify the contribution of different
components of the model, specifically that component
attributed to predictor variables and that attributed to
phylogenetic or random effects, to the overall model
fit? The partial R2 corresponding to the phylogenetic or
random effect should give an indication of the statistical
significance of these covariance structures in the data.
Third, does the R2 give similar values when applied to
data generated by the same statistical process? If the
values of R2 when applied to data generated from the
same statistical process are all similar, then the R2 gives
a precise measure of goodness-of-fit.

MATERIALS AND METHODS

Here, I present three R2s—R2
resid, R2

prd, and R2
lik—that

can be applied to a broad class of models in which the
variance structure of the residuals contains covariances.
As a strategy of attack, I will begin with a detailed
discussion of R2

resid, with the goal of explaining the
challenges of defining an R2 for correlated data as well
as possible solutions. R2

resid is based on the variance
of residuals of a fitted model and is related to R2

glmm

(Nakagawa and Schielzeth, 2013), and contrasting R2
resid

with R2
glmm generates a discussion of what partial R2s

reveal about a fitted model. I will then give briefer
presentations of R2

pred and R2
lik . All R2s are computed in

the R package rr2 (Ives and Li, 2018).

R2
resid

There is an extensive literature on R2s for GLMs and
LMMs, and a growing literature for GLMMs (Buse,
1973; Cameron and Windmeijer, 1996, 1997; Kenward
and Roger, 1997; Menard, 2000; Xu, 2003; Kramer, 2005;
Edwards et al., 2008; Liu et al., 2008; Orelien and
Edwards, 2008; Nakagawa and Schielzeth, 2013; Jaeger
et al., 2017); this literature forms the basis for the R2s that
can be applied to phylogenetic models. The three R2s
take three different approaches to defining “explained
variance”, the same general approaches considered for
LMMs by Xu (2003). The R2 discussed first, R2

resid
(for residual variance), is similar to R2

glmm presented
by Nakagawa and Schielzeth (2013) and related work
(Edwards et al., 2008; Jaeger et al., 2017; Nakagawa et al.,
2017). Therefore, I will present R2

resid first in application to
GLMMs and then in application to phylogenetic models.

For the sake of exposition, consider the simple LMM
for a species-specific response variable Y that depends
on a predictor variable x and a random effect b that
describes variance in the mean (intercept) response of
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FIGURE 1. Depictions of the covariance matrices from LMM, PGLS, GLMM, and PGLMM models. In the covariance matrix for LMMs,
�2�(�2

b)=�2
b�b +�2, the variance of the random effect �2

b is scaled against the variance of the residual errors. In the PGLS with a Pagel’s � branch-
length transform, the covariance matrix is �2�(�)=�2��BM +�2(1−�)I, in which � determines the strength of phylogenetic signal in the residual
errors. For GLMMs, the variance of the random effect is given by �(�2

b)=�2
b�b, and there is additional variance �2

w[i] owing to the discreteness
of the data. Similarly, for PGLMM, phylogenetic signal enters the model as a covariance matrix �2

b�BM , with additional variance �2
w[i].

species from different taxonomic groups:

Yi =�0 +�1xi +btaxon[i]+ei

btaxon[i] ∼Gaussian(0,�2
b)

ei ∼Gaussian(0,�2
e )

(1)

Here, assume there are n species (i=1,...,n) and m
taxonomic groups, so that the random effect b has m
levels representing m draws from a Gaussian distribution
with mean 0 and variance �2

b , and the function taxon[i]
maps species i into its appropriate taxonomic group. This
model can be visualized as a phylogeny in which species
within the same taxon have a common ancestor, and all
common ancestors occur at the same height of the tree
(Fig. 1, LMM). R2

glmm (Nakagawa and Schielzeth, 2013)
is computed from the different sources of variance in Yi.
Specifically, for the model in equation (1) the conditional
R2

glmm(c) is

R2
glmm(c) =1− �̂2

e

�̂2
x + �̂2

b + �̂2
e

(2)

given in terms of the estimates of �2
b and �2

e , and the
estimate of the variance in x,�̂2

x =�2 var(xi). This has the
usual interpretation of R2s as one minus the unexplained
residual variance relative to the total variance. R2

glmm(c)
gives a measure of the total explained variance, where
variance attributed to the random effects is considered
as explained.

It is also useful to ask how much of the total
explained variance can be attributed to random effects.
Nakagawa and Schielzeth (2013) define the marginal R2

corresponding to the fixed effects as

R2
glmm(m) =1− �̂2

e + �̂2
b

�̂2
x + �̂2

b + �̂2
e

(3)

Here, the variance unexplained by the fixed effects now
includes the variance of the random effect. Since we
also want to know the R2 corresponding to the random
effects, we could extend these ideas to give a marginal
R2

glmm(r) for the random effects:

R2
glmm(r) =1− �̂2

e + �̂2
x

�̂2
x + �̂2

b + �̂2
e

(4)
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R2
glmm(m) and R2

glmm(r) give a partition of R2
glmm(c) into

parts associated with the fixed and random effects,
since R2

glmm(m) +R2
glmm(r) =R2

glmm(c). However, they are

not partial R2s. Partial R2s depend on the difference
between the full model fitted with all components, and
a reduced model in which one or more components
(e.g., the fixed or random effects) have been removed.
For example, the partial R2

glmm for the fixed effect x
would be

R2
glmm.partial.x =1−

1−R2
glmm

1−R2
glmm.r

=1− �̂2
e

�̂2
e.r

(
�̂2

e.r + �̂2
e.r

�̂2
x + �̂2

b + �̂2
e

)

(5)

where subscripts containing “.r” correspond to the
estimates of the variances from the reduced model in
which x is excluded. The numerator and denominator of
the term in parentheses are estimates of the total variance
from the reduced and full models, respectively. Even
though they estimate the same thing, their estimates
differ, normally by only a little but potentially by a lot
depending on the fits of the full and reduced models.
Because this complicates comparisons between total and
partial R2s, and between partial R2s for different reduced
models, R2

resid for GLMMs is defined using the sample
variance var(Y). Because var(Y) is the same for full and
all reduced models, this simplifies the right-hand side of
equations 2 and 5:

R2
resid =1− �̂2

e
var(Y)

R2
resid.partial.x =1− �̂2

e

�̂2
e.r

(6)

To illustrate the difference between marginal and
partial R2s, consider the case of the model from equation
(1) in which, in addition to Y, the values of x are
associated with taxon (i.e., x has taxonomic signal).
Specifically, let x=bx +ex where bx is a random effect
for taxa that has the same structure as the random
variable b for Y in equation (1). To generate a contrast
between marginal and partial R2s, let x have either
weak (�2

bx =0.2,�2
ex =0.8) or strong (�2

bx =0.8,�2
ex =0.2)

taxonomic signal (Table 1). The marginal values of R2
glmm

(R2
glmm(m) and R2

glmm(r) from equations 3 and 4) are little
affected by the strength of taxonomic signal in x. In
contrast, the partial R2 values for x from R2

glmm.partial

(equation 5) and R2
resid (equation 6) are much lower for

the case when there is strong taxonomic signal in x; this
is also true for R2

pred and R2
lik which are introduced later.

The pattern seen in the R2s corresponds to the statistical
significance of the coefficient for x in the model: the
average t-scores for the fixed effect when there was weak
and strong taxonomic signal in x were 5.23 and 1.61,

respectively, which correspond to P<10−5 and P=0.11.
Thus, the lower significance of the fixed effect with
strong taxonomic signal in x is reflected in the lower
partial R2s. Note finally that R2

glmm.partial and R2
resid have

very similar values, implying that in this case the sum
of all variance estimates used in equation (5) are close to
var(Y) in equation (6).

The explanation for taxonomic signal in x affecting
partial R2s is that, in the reduced model with x removed,
the taxonomic signal in values of Y that was accounted
for by x in the full model is absorbed into the random
effect b (equation 1) in the reduced model. This can
be seen by looking at the taxonomic effect model [full
model: (�1,�

2
b)= (0,1); reduced model: (�1,�

2
b)= (0,0)].

For the case with strong taxonomic signal in x, the total
R2 for the taxonomic effect model (0.36) is similar to
the total R2 for the full model (0.38), implying that the
taxonomic signal in the residuals can explain most of the
taxonomic signal in the data Y.

A PGLS model comparable to the LMM in
equation (1) is

Yi =�0 +�1xi +ei

e∼Gaussian(0,�2�(�)) (7)

The error term ei has a multivariate Gaussian distri-
bution with mean 0 and covariance matrix �2�(�) that
may depend on a vector of parameters �. In PGLS,
the structure of �2�(�) is typically generated under
a specific model of evolution, such as an Ornstein–
Uhlenbeck model of evolution under selection to an
optimum (Martins and Hansen, 1997; Blomberg et al.,
2003; Lavin et al., 2008). The definitions of R2

resid, R2
pred,

and R2
lik are not limited by the form of evolutionary

transform, although their implementation for phylo-
genetic models for discrete data is limited by the
availability of methods for fitting discrete phylogenetic
models. I will present the R2s using Pagel’s � branch-
length transform (Pagel, 1997; Housworth et al., 2004)
that makes implementation easiest. In this transform,
�(�) is the sum of two matrices, �(�)=��BM +(1−�)I,
where �BM is the covariance matrix derived under the
assumption of Brownian motion evolution (Felsenstein,
1985; Grafen, 1989), and I is the identity matrix. If �=
1, then the covariance between errors at two tips on
the phylogenetic tree is proportional to the height of
their most common ancestor. If �=0, the errors are
uncorrelated, and 0<�<1 gives intermediate levels of
phylogenetic signal. The effect of � on the covariances
among errors can be depicted by lengthening the tip
branches of the BM phylogenetic tree to make up a
proportion � of the base-to-tip distance (Fig. 1, PGLS).
Although the phylogenetic tree in Figure 1 is ultrametric,
the calculations of R2s are the same for trees with
non-contemporaneous tips.

The LMM in equation (1) has the same statistical
structure as equation (7), since the covariance matrix for

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy060/5098616 by guest on 13 N

ovem
ber 2018



Copyedited by: MANUSCRIPT CATEGORY: Regular Manuscript

[16:59 18/10/2018 Sysbio-OP-SYSB180063.tex] Page: 5 1–19

2018 IVES—R2s FOR CORRELATED DATA 5

TABLE 1. Illustrative simulation comparing R2s fitted to two LMMs (equation 1) that differ in whether the predictor variable x shows weak
taxonomic signal (�2

bx =0.2) or strong taxonomic signal (�2
bx =0.8)

Full Reduced R2
glmm.partial R2

resid R2
pred R2

lik R2
glmm(c) R2

glmm(m) R2
glmm(r)

�2
bx =0.2 (�1,�

2
b)

Total tax. (0,1) (0,0) 0.29 0.29 0.34 0.16
Partial x (1,1) (0,1) 0.25 0.26 0.26 0.25
Total (1,1) (0,0) 0.48 0.47 0.52 0.38 0.48 0.23 0.24
Partial tax. (1,1) (1,0) 0.30 0.31 0.36 0.19
Total x (1,0) (0,0) 0.24 0.24 0.24 0.24
�2

bx =0.8
Total tax. (0,1) (0,0) 0.36 0.36 0.41 0.22
Partial x (1,1) (0,1) 0.04 0.04 0.02 0.07
Total (1,1) (0,0) 0.38 0.38 0.42 0.28 0.38 0.18 0.21
Partial tax. (1,1) (1,0) 0.26 0.25 0.31 0.13
Total x (1,0) (0,0) 0.17 0.17 0.17 0.17

Partial R2s were computed for all nested models, ordered in rows with the total R2 in the middle. Full and reduced models are specified by the
presence or absence of the two parameters (�1,�

2
b). R2

glmm.partial is the partial R2
glmm(c) (equation 5). R2

glmm was computed for the total R2 (R2
glmm(c),

equation 2) and marginal R2s (R2
glmm(m), equation 3; R2

glmm(r), equation 4); because R2
glmm(m) and R2

glmm(r) are computed from the full model, they

are placed on the same row as the total R2s from the other methods. Simulations were performed with �1 =0 or 1, with eight levels of b (�2
b =0

or 1) and 10 observations per level (�2
e =1.5). The mean t-scores for the fixed effect when there was weak and strong taxonomic signal in x were

5.23 and 1.61, respectively, which correspond to P<10−5 and P=0.11. Although the values reported are from single simulations, they are close
to the means obtained from 1000 simulations.

the LMM can be written �2
e �(�2

b)=�2
b�b +�2

e I, where �b
is a block-diagonal matrix whose values are 1 for each
row i and column j corresponding to species within the
same taxon and 0 elsewhere (Gelman and Hill, 2007).
Although random effects in LMMs are often explained as
if they were randomly varying fixed effects, technically
they occur in the variance–covariance matrix of the error
term. Nonetheless, in most fitting algorithms, such as
that used in lmer in the lme4 R package (Bates et al.,
2015), the values of bi at each level of the random effect are
computed; technically, these values are the conditional
expectations of bi as opposed to fitted coefficients. LMMs
can be fit as if they were phylogenetic models, which
gives identical results as fitting them as LMMs (Ives,
2018).

For the phylogenetic model with Pagel’s � transform-
ation, a possible approach to defining an R2 is to treat
(1-�)�2 as the unexplained variance as done for �2

e in
the LMM (equation 6). This approach fails, however.
The problem is that the evolutionary null hypothesis
is BM phylogenetic signal (�=1), and it is common
for estimates of �=1 in data sets. When this occurs,
the total R2

resid = 1 (equation 6) and consequently, all
partial R2s will be 1 or undefined (0 divided by 0). This
problem does not occur for the LMM because R2

resid only
equals 1 if there is no variation in Y among species
within the same taxa; while this is not impossible, it will
essentially never occur. An exception to this is models
that incorporate measurement error, in which tip lengths
can go to zero when estimates of measurement error in
Y are too high (Ives et al., 2007); R2

resid,R
2
pred, and R2

lik can
be extended for measurement-error models, although
this is not described here. The problem of defining
the unexplained (residual) variation needed to compute
R2

resid (equation 6) is more clear for other branch-length

transforms, such as the OU transform, in which �2�(�)
does not decompose into linear terms as it does in Pagel’s
� transformation.

A solution to this problem involves scaling ��).
Because the total variance in the model, �2�(�), is the
product of �2 and �(�), the matrix �(�) can be rescaled
by a constant without changing the fit of the statistical
model; the only effect of multiplying �(�) by a constant
is to change the value of �2 by 1/constant in the fitted
model. Even though this does not affect model fitting,
it does affect an R2 that is based on �2. In general
�(�̂f ) �=�(�̂), so �(�) does not cancel out when dividing
(�̂e)2 by (�̂e.r)2 (equation 6). To solve this problem, I
propose scaling �(�) so that the sum of branch lengths
of the corresponding phylogenetic tree equals 1. For a
fitted tree with strong phylogenetic signal, scaling �(�)
to have the sum of branch lengths equal to 1 will make
the base-to-tip distances greater than a fitted tree with
no phylogenetic signal. Because this scaling increases
the diagonal elements in �(�) when there is greater
phylogenetic signal, it will reduce the estimates of �2 and
decrease the variance in the residuals that is unexplained
by the model. Although this is only a convention (as
opposed to a scaling derived from theory), the resulting
R2

resid performs for phylogenetic models in a similar way
as it does for LMMs.

To illustrate R2
resid for a phylogenetic model, suppose

a researcher has data on sprint speed in lizards, and
the predictor variables are hind leg length and body
size (e.g., Bauwens et al., 1995). Hind leg length is
the variable of interest, while body size is a nuisance
variable, and therefore, the interesting R2 compares the
models with and without hind leg length. I simulated the
case of 30 species under BM evolution and compared
the cases in which hind leg length (as a proportion of
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TABLE 2. Simulation example of sprint speed regressed on log body mass (x1) and log hind limb
length (x2)

Phylogenetic signal in x2 No phylogenetic signal in x2

Coefficient Estimate P Estimate P

Intercept 0.34 0.58 0.28 0.65
x1 1.17 <10−5 1.00 <10−5

x2 0.21 0.22 0.20 0.0038
� 1 1
N = 30 logLik = −16.92 logLik = −16.96

Phylogenetic signal in x2 No phylogenetic signal in x2

Reduced model R2
resid R2

pred R2
lik R2

resid R2
pred R2

lik

x2 = 0 0.05 −0.05 0.05 0.16 0.22 0.26
�=0 0.40 0.65 0.51 0.46 0.65 0.56
x1 =x2 =�=0 0.86 0.92 0.89 0.78 0.86 0.82

For the simulation, the regression coefficients for log(body size) and log(hind leg length) were �1 =1 and
�2 =0.5, and the intercept was �0 =0 (equation 8); residual variation was given by BM evolution, so �=1.
Hind limb length was simulated under BM evolution (left table) or as a Gaussian random variable (right
table), and in both cases the variance of the hind limb length was standardized to 1.

body size) either did or did not show phylogenetic signal.
Specifically, the model was

Y =�0 +�1 log(body size)+�2 log(hind leg length)+ei

e∼Gaussian(0,�2�BM) (8)

where log(body size) was selected from a Gaussian
distribution with covariance matrix �BM, and log(hind
leg length) was selected from a Gaussian distribution
with covariance matrix either I or �BM. In the fitted
PGLS models without and with phylogenetic signal in
hind leg length (Table 2), the parameter estimates and
log likelihoods were similar, and the only indication
that phylogenetic signal in hind limb length affected
the fit of the model was the P-value for the regression
coefficient for hind limb length (P=0.22 and P=0.0038
for the models with and without phylogenetic signal in
hind leg length). However, the partial R2

resid (and also
partial R2

pred and R2
lik included for completeness) for

hind leg length were ≤0.05 when hind leg length had
phylogenetic signal, and 0.16–0.26 when it did not. (Note
that the partial R2

pred was negative for the model with
phylogenetic signal in x2, which can happen especially
with small sample sizes.) In contrast, the partial R2

resid
for phylogenetic signal (reduced model with �=0) and
the total R2

resid (reduced model with x1 =x2 =�=0) did
not differ as much between simulations. The explanation
for these results is similar to that for the example with
the LMM (Table 1). The partial R2s for hind limb length
depended upon the phylogenetic signal in hind limb
length because, when there is phylogenetic signal and
hind limb length is removed from the model, much of
the information is recaptured in the phylogenetic signal
of the residual variation. This example illustrates the
value of having partial R2s that can assess the role of
predictor variables separately from other variables like
body size that are not of specific interest. It also shows

how the partial R2 for the phylogeny is associated with
the statistical significance of tests for parameters like �
that depend on phylogeny.

R2
resid can be extended to models of discrete data, and

for illustration I will use the simple model with only a
single predictor variable (fixed effect) that is comparable
to equations (1) and (7):

E{Yi|ei}=�i

g(�i)=�0 +�1xi +ei

e∼Gaussian(0,�2�(�)) (9)

where data Yi are distributed by a member F of the
exponential family of distributions (McCullagh and
Nelder, 1989; Gelman and Hill, 2007). The parameter �i
of distribution F is itself a random variable, and applying
the link function g() to �i gives a linear equation in terms
of the predictor variable xi and a random variable ei.
The variable ei has a multivariate Gaussian distribution
with means 0 and covariance matrix �2�(�) that may
depend on a vector of parameters �; hence, the second
line of equation (9) is often called the Gaussian- or latent-
space equation. When the link function g() is the identity
function, then equation (1) becomes a linear model (e.g.,
LMM or PGLS). For the GLMM companion to the LMM
in equation (1) with a random effect b, the covariance
matrix is �2

e �(�2
b)=�2

b�b in which there is no variance
term �2

e .
For comparison with LMMs, GLMMs can also be

depicted as a tree (Fig. 1 GLMM), but rather than the
residual errors at the tips of the tree having length
1, for models of discrete data the error variance is
generated by the unavoidable differences between the
observation (0 or 1 for binary data) and probability of the
observation (given by �i that takes values between 0 and
1). The lengths of these variances �2

w[i] will differ among
observations i, since they depend on the difference
between an observation and �i (Schall, 1991). The terms
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�2
w[i] are the inverses of the GLM iterated weights that

are used for fitting GLMs (McCullagh and Nelder, 1989)
and occur in methods for fitting GLMMs (Schall, 1991;
Breslow and Clayton, 1993; Pinheiro and Chao, 2006) and
PGLMMs (Ives and Helmus, 2011). Specifically,

�2
w[i] =g′(�i)var(yi−�i) (10)

where g’(�i) is the derivative of the link function at �i,
and var(yi −�i) denotes the theoretical variance of the
difference between datum yi and its predicted value �i.
For example, for a logit link function in a binary GLMM,
var(yi −�i)=�i(1−�i).

For GLMMs, R2
resid is defined exactly like R2

glmm(c)for
GLMMs:

R2
resid =1− �2

d

�̂2
x + �̂2

b +�2
d

(11)

where �2
d gives the “distribution-specific variance” that

depends on the form of the link function g(). For a
binomial GLMM with probit and logit link function,
Nakagawa and Schielzeth (2013) propose �2

d =1 and
�2

d =�2/3, respectively. Nakagawa et al. (2017) give an
extensive discussion of additional formulations of �2

d
for different exponential distributions and link func-
tions. As detailed in the Appendix, �2

d =�2/3 tends to
underestimate R2

resid (and R2
glmm(c)) for the logit link

function relative to the probit link function. Reducing
�2

d to 0.8768809 �2/3 leads to a better correspondence
between R2

resid calculated for the same data using probit
and logit link functions.

An alternative approach for determining �2
d is to use

the GLM iterated weights �2
w[i], since these are associated

with the unexplained variance in the Gaussian space
of the GLMM (equation 9). Because �2

w[i] will differ
among data points, it is necessary to take an average; the
appropriate average is the geometric mean (Appendix).
This leads to using �2

d =�2
w =exp(E{log�2

w[i]}). For a

binary GLMM, using either �2
d =0.8768809�2/3 or �2

d =
�2

w leads to the very similar values of R2
resid for both

logit and probit link functions. Nonetheless, because
the values of �2

d differ, so do the values of R2
resid,

which are lower when scaling �2
d =�2

w. Throughout the
remainder of this article, the binary GLMM will use
a logit link function with �2

d =0.8768809�2/3, which is
most comparable to R2

glmm(c), although �2
d =�2

w is the
default in the R package rr2.

R2
resid for GLMMs extends to partial R2s using the

standard formula

R2
resid.partial =1−

1−R2
resid.f

1−R2
resid.r

(12)

where R2
resid.f and R2

resid.r are R2
resid (equation 11) for

full and reduced models, respectively. For phylogenetic
models, R2

resid takes exactly the same form (Fig. 1,
PGLMM). GLMMs can be fit using glmer() in the R
package lme4 (Bates et al., 2015), and binary phylogenetic
GLMMs (PGLMMs) (Ives and Helmus, 2011; Ives and
Garland, 2014) can be fit using the function binaryP-
GLMM() available in the R packages ape (Paradis et al.,
2004) and rr2 (Ives and Li, 2018). In principle, it is possible
to calculate R2

resid for the Bayesian methods in the R
package MCMCglmm (Hadfield, 2015), although this is
not pursued here.

R2
pred

R2
pred (for prediction) is based on the variance in

the difference between observed and predicted data,
1
n
∑

(Yi −Ŷi). This approach conceptually comes the
closest to answering the question of how much variation
in the data is explained by the covariances in the model,
where the “explanation” is measured by the prediction
of the residuals. For the case of LMMs, the predicted
values Ŷi are taken as the sum of the fixed effect values
and the conditional estimates of the values of the random
effects. For the LMM in Figure 1, this corresponds to
the estimated values at the polytomies formed at the
nodes shared by all observations within the same level
of the random effect (i.e., taxon). As the number of
observations within each level of the random effect
increases, R2

pred for LMMs converges to R2
resid because

the estimates of the values of the random effects become
more precise.

As it does for R2
resid, PGLS poses a complication

for R2
pred: what is the predicted value Ŷi? To parallel

R2
pred for LMMs, Ŷi could be taken as the estimated

value at the node immediately below the tip on the
phylogeny containing Yi. For phylogenies with some
short terminal branch lengths, however, the estimates
for the node underneath Yi will be determined largely
by the value of Yi itself, leading to very high R2s.
Therefore, for PGLS I define R2

pred using the estimates

Ŷi computed by removing the point Yi from the data
set and then estimating Ŷi from the predictor variables
and the remaining data points. The estimate of Ŷi is
calculated using the full n×n covariance matrix of the
fitted model, V(�̂)=�2	(�̂), that contains the variances
and covariances of the residual errors. Specifically for
equation (1), the expected value of residual Ri =Yi −
(�0 +�1xi) from the remaining residuals R[−i] is

R̂i = R̄+V[i,−i]V−1
[−i,−i](R[−i]−R̄), (13)

where R̄ is the GLS mean of the residuals, V[i,−i] is row i
of V(�̂) with column i removed, and V[−i,−i] is V(�̂) with
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row i and column i removed (Petersen and Pedersen,
2012). The predicted value of Yi is then Ŷi =�0 +�1xi +R̂i.

The same approach as used for LMMs can be used
for GLMMs and PGLMMs. In these cases, the variances
are calculated for untransformed values of Yi, rather
than in the Gaussian space of g(�i) as was done for
R2

resid. Therefore, one should expect that they may take
different values. The predicted values are given from
the estimation algorithms for GLMMs by glmer() in the
R package lme4 (Bates et al., 2015) and for PGLMMs
by binaryPGLMM() (Ives and Helmus, 2011; Ives and
Garland, 2014) in the R packages ape (Paradis, 2012) and
rr2 (Ives and Li, 2018). In PGLMMs, the estimates Ŷi
correspond to those values a distance �2

w from the tips of
the tree in Figure 1.

R2
lik

Motivation for R2
lik (for likelihood) comes from the

standard R2 for a generalized least squares model, GLS
(Buse, 1973; Judge et al., 1985),

R2 =1− SSf (�̂f )

SSr(�̂r)
(14)

where SSf and SSr are the GLS sums-of-squared errors
for the full and reduced models (Judge et al., 1985):

SS(�̂)= (Y−X�̂)′V(�̂)−1(Y−X�̂). (15)

Here, Y is the n×1 vector of response values Yi, X is
the n×p matrix for p predictor variables (including the
intercept), and �̂ is the 1×p vector of estimated regression
coefficients (fixed effects). Technically, GLS models do
not have covariances that depend on parameters � (even
though “PGLS” is used to refer to models that do), so the
SS in equation (15) is conditioned on �.

For continuous phylogenetic models, equation (14)
presents the same problem as discussed for R2

resid:
comparing full and reduced models depends on the
scaling of �(�), because V(�)=�2�(�). For R2

resid this
problem was solved by the convention of standardizing
�(�) to have summed branch lengths equal to one. Here,
a different scaling is used. In particular, if �(�) is scaled
so that the determinant of V(�) equals one, then

logLik(�̂)=−n
2

(log(2� SS(�̂)/n)+1). (16)

Substituting into equation (14) then leads to

R2
lik =1−exp

(−2
n

(logLik(�̂f )−logLik(�̂))
)

. (17)

I derived R2
lik defined by equation (17) for PGLS models,

although it can be extended to any model that is fit
using maximum likelihood. R2

lik has been proposed for
logistic regression (Cragg and Uhler, 1970; Maddala,
1983; Cox and Snell, 1989) and generalized by Magee

(1990) and Pinheiro and Chao (2006), and used for
LMMs by Kramer (2005). For discrete data, equation
(17) does not have a maximum of one, because the
maximum attainable log-likelihood for discrete data is
zero. Therefore, Nagelkerke (1991) and Cameron and
Windmeijer (1996) proposed dividing by the maximum
attainable value, which is equation (17) with logLik(�̂f )=
0; throughout, I have used this standardization.

R2
lik is computing using maximum likelihood (rather

than REML) estimates for LMMs, PGLS, and GLMM
models. A complication occurs for binary PGLMM
models, because the algorithm used by binaryPGLMM()
from which R2

resid and R2
pred are calculated uses quasi-

likelihoods and does not give a true maximum like-
lihood. Therefore, for binary phylogenetic models I
calculated R2

lik using the ML-based function phyloglm()
in the R package phylolm (Ho and Ane, 2014), fitting the
model with penalized ML but then using the provided
log likelihood values to calculate R2

lik . The function
phyloglm() fits a phylogenetic logistic regression (Ives
and Garland, 2010), rather than the PGLMM given by
equation (9), although I will still refer to this as a binary
PGLMM model for simplicity in the text.

Simulations for Assessment
The simulations to assess the statistical properties of

the R2s applied to LMM, PGLS, GLMM, and PGLMM all
follow the same strategy. For each, data were simulated
for the cases with variation in a predictor variable
and no covariances (�1 >0,�=0), only covariances (�1 =
0,�>0) or both (�1 >0,�>0). For each case, the model
parameters were the same for all simulations, so that
variation in values of a given R2 among data sets is
caused by random sampling from the same statistical
process.

For LMM, data were simulated with the model

yi =�0 +�1xi +bui +ei (18)

where xi follows a Gaussian distribution with mean 0
and variance 1, and the random effect ui has 10 levels,
with b following a Gaussian distribution with mean 0
and variance �. I selected parameter values to generate
moderate R2 values. For GLMMs, values from equation
(18) without the residual error term ei were used through
a logit link function (equation 9) to produce binomial
probabilities for a binary model.

For the PGLS model, to obtain the covariance matrix
�(�) in equation (7), I first simulated random phylogen-
etic trees using the rtree() function of the ape package
of R (Paradis et al., 2004). Thus, a different tree was
simulated for each data set. The strength of phylogenetic
signal was varied using Pagel’s � transformation. Values
of xi were simulated under the BM assumption using the
rTraitCont() function (Paradis et al., 2004). The simulated
data were fit using penalized maximum likelihood
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with the function phylolm() assuming a Pagel’s lambda
transformation in the package phylolm in R (Ho and
Ane, 2014). The PGLMM was similar to the PGLS model,
but in contrast the predictor variable xi was assumed
to be independently distributed; including phylogenetic
signal in xi caused challenges for model fitting for
some simulated data sets, making the simulation studies
difficult. Phylogenetic signal in the residuals ei was
controlled by setting �(�)=��BM so that in the absence
of phylogenetic signal (�=0) the simulations conformed
to simple logistic regression. To simulate binary data, a
logit link function was used.

RESULTS

The R2s were assessed according to three properties: (i)
their ability to measure goodness-of-fit as benchmarked
by the LLR of full model and the model with only an
intercept, (ii) whether they can identify separate sources
of variation in the model, and (iii) the precision of their
inference about goodness-of-fit. Property (iii) treats the
R2s as if they were statistical estimators of goodness-of-
fit and asks how variable are the estimates when applied
to repeated simulations from the same model (e.g.,
Cameron and Windmeijer, 1996). A more comprehensive
assessment is given in Supplementary Section 1 available
on Dryad at http://dx.doi.org/10.5061/dryad.345v6.

Goodness-of-Fit

All R2s were positively related to the LLR (Fig. 2),
which is a minimum requirement for an R2. R2

lik shows
a monotonic relationship with LLR, which is necessarily
the case due to the definition of R2

lik (equation 17). For
the remaining R2s, values for a given LLR were generally
lower for simulations in which variation was produced
only by the fixed effect (�1 >0,�=0; Fig. 2, circles).
This implies that, relative to the LLR, these R2s were
attributing less “explained” variance to fixed effects than
random effects.

For the LMM, I included the adjusted R2,R2
adj, com-

puted from OLS regression by treating the random
effect as a categorical fixed effect. R2

resid and R2
adj were

almost identical. This correspondence implies that R2
resid

gives an R2 that is interpretable in the same way as the
standard R2

adj but generalized to LMMs.

All of the R2s other than R2
lik showed greater scatter

in their relationships with LLR for the simulations of
binary data (GLMM and PGLMM). In part, this is due
to the difficulty of estimating variance parameters � in
binomial models. The scatter seems particularly large
for R2

resid and R2
pred applied to PGLMM simulations,

although this case requires some technical discussion.
For PGLMM, the LLR was obtained from phyloglm()

using penalized maximum likelihood, whereas R2
resid

and R2
pred were estimated from the model fit by binaryP-

GLMM() using the pseudo-likelihood. The phyloglm()
estimate of phylogenetic signal, �, tended to absorb at
zero even when the estimate � from binaryPGLMM()
was positive; therefore, R2

resid and R2
pred could be positive

even when the LLR was zero. Previous comparison
between phyloglm() and binaryPGLMM() showed that
they have similar performances but do not necessarily
give the same conclusions about the presence of phylo-
genetic signal for the same data set (Ives and Garland,
2014).

Identifying Sources of Variation

The partial R2
resid,R

2
pred, and R2

lik were generally able to
identify sources of variation between components of a
model, specifically between regression coefficients (fixed
effects) and covariance parameters (random effects);
this is seen in the generally non-overlapping clustering
of symbols in Figure 3. Simulations with �1 >0 and
�=0 should have partial R2s for �1 that are positive
and partial R2s for � that are zero (circles, Fig. 3).
Simulations with �1 =0 and �>0 should have partial
R2s for �1 that are zero and partial R2s for � that are
positive (triangles, Fig. 3). Simulations with �1 >0 and
�>0 should have both partial R2s positive (x’s, Fig.
3). Because in the simulations the values of �1 and �
were the same whether or not the other was zero, the
partial R2s for �1 should be the same for simulations
with �=0 (circles) as for simulations with �>0 (x’s), and
the partial R2s for � should similarly be the same for
�1 =0 (triangles) and �1 >0. For continuous data (LMM
and PGLS), all three R2s had similar performance and
similar values of the partial R2s (see also Supplementary
Section 1 available on Dryad). For binary data (GLMM
and PGLMM), the three R2s showed more scatter, which
in large part is due to the greater statistical challenge
of estimating regression coefficients and variance para-
meters from discrete data. This is seen, for example, in
the GLMM and PGLMM simulations with �1 >0 and
�>0 in which the partial R2

lik for � was occasionally
zero (x’s); these cases occur when the estimate of � was
zero even though a non-zero value was used in the
simulations.

Inference about the Underlying Process

The ability of R2s to infer the fit of a model to its
assumed statistical process depends on the precision of
the estimates of R2. Figure 4 plots the mean values of the
R2s with 66% and 95% inclusion intervals for simulated
data sets with sample sizes 40,60,...,160. For LMMs and
GLMMs, there were 10 levels of the random effect; data
sets were produced by first simulating 160 samples (16
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FIGURE 2. Results for LMM, PGLS, GLMM, and PGLMM simulations giving R2
resid,R

2
pred,R

2
lik , and the OLS R2

adj versus the LLR between
full model and reduced model containing only an intercept. All simulated data had 100 samples. For LMM, the simulation model (equation 18)
contained a fixed effect with �1 =0 or 1, and a random effect ui with 10 levels and variance �=0 or 1.5. The binomial (binary) GLMM was similar
but with �1 =0 or 1.8, and �=0 or 1.8. For PGLS, �1 =0 or 1, and the strength of phylogenetic signal �=�=0 or 0.5; while for PGLMM �1 =0 or
1.5, and �=0 or 2. The LMM was fit using lmer() (Bates et al., 2015); the GLMM was fit using glmer() (Bates et al., 2015); the PGLS was fit using
phylolm() (Ho and Ane, 2014); and for PGLMM LLR and R2

lik were fit using phyloglm() (Ho and Ane, 2014), and R2
resid and R2

pred were fit using
binaryPGLMM() (Ives and Garland, 2014). For reduced models without variance parameters, fitting was done with lm() and glm() in R.

replicates at each level) and then randomly removing
two replicates at each level to reduce the sample size in
steps of 20. For PGLS and PGLMM, each data set at each
sample size was simulated independently.

For LMM simulations, R2
resid,R

2
pred, and R2

adj showed
similar patterns (Fig. 4), reflecting the fact that they give
very similar values (Fig. 2, Supplementary Section 2
available on Dryad). Mean values did not change

much with sample size, and there was only a mod-
erate increase in variability among simulations with
decreasing sample size. In contrast, mean values of R2

lik
decreased with decreasing sample size. This probably
reflects that information is lost when estimating the
model parameters. In contrast to LMM simulations, the
PGLS simulations showed less change in the means of
R2

lik with sample size, presumably because there were
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FIGURE 3. Results for LMM, PGLS, GLMM, and PGLMM simulations giving partial values of R2
resid,R

2
pred,R

2
lik , and R2

adj . The partial R2 for �1

was calculated using the reduced model in which � is removed, and for the partial R2 for � the reduced model had �1 removed. The simulated
data and fitting methods are the same as in Figure 2.

more covariances among samples (i.e., the covariance
matrix had more non-zero elements) than in the LMM
with few replicates per level.

For the GLMM, both R2
resid and R2

pred had somewhat

higher variances (less precision) than R2
lik . The greater

variation in values of R2
resid and R2

pred compared with

R2
lik may occur because R2

resid and R2
pred depend directly

on estimates from the models, whereas R2
lik depends

only on the synoptic likelihood. Thus, R2
resid and R2

pred
are compromised when the estimates are poor, as is

particularly the case when sample sizes are small.
For PGLMM, the variances in R2

resid and R2
pred were

similar to R2
lik (Fig. 4). This is likely because estimates

of phylogenetic signal (�=�) were well-bounded, in
contrast to the variance in random effects in the GLMMs.

DISCUSSION

R2
resid,R

2
pred, and R2

lik were presented here with focus
on phylogenetic models, although they are broadly
applicable to models with correlated errors. Below, I first
address their use as measures of goodness-of-fit, and
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FIGURE 4. Results for LMM, PGLS, GLMM, and PGLMM simulations showing means, 66% and 95% inclusion intervals for R2
resid,R

2
pred,R

2
lik ,

and R2
adj versus sample size. For all simulations 1000 data sets were analyzed at each sample size. Parameter values were: LMM, �1 =1,�=1.5;

PGLS, �1 =1,�=0.5; GLMM, �1 =1.8,�=1.8; and PGLMM, �1 =1.5,�=2.

then their specific application to phylogenetic models
using mixed models as a reference. I end with general
recommendations.

Partial R2 and Goodness-of-Fit

The R2s presented here are designed to give partial
R2s and are consequently measures of goodness-of-fit.
Applications of standard R2s in regression and ANOVA
all rely on partial R2s which compare the amount of
variation explained by a full model to a reduced model
with terms from the full model removed. Comparisons

between full and reduced models underlie model
selection, either by classical methods such as stepwise
selection based on partial F scores or methods involving
model selection criteria such as AIC. Partial R2s are also
closely associated with the statistical significance of a
component of a model; this is especially the case for R2

lik
that is computed from log-likelihoods, and therefore, is
directly related to likelihood ratio tests.

The partial R2
resid,R

2
pred, and R2

lik differ conceptually

from the marginal R2
glmm(r) (equation 3) derived for

GLMMs (Nakagawa and Schielzeth, 2013). While mar-
ginal R2s are useful in partitioning variances among
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components of fitted models, partial R2s answer the
question of how important are the components, where
importance is measured by the loss of explanatory power
following their removal. Because marginal R2s do not
compare between full and reduced models, they do
not give information about how the fit of a model
declines as components are removed. A final advantage
of partial R2s is that they make it easy to investigate
any combination of fixed and random effects, and their
interactions, by comparing full and reduced models; in
contrast, computing and interpreting marginal R2s for
complex random effects, such as random slope effects, is
less straightforward (Johnson, 2014).

Partial R2s can answer the question of how important
phylogenies are in explaining the pattern of covariance
in the data. Does this mean that partial R2s themselves
are measures of phylogenetic signal (sensu Blomberg
et al., 2003) or, equivalently, phylogenetic heritability
(Lynch, 1991)? Phylogenetic signal could be computed,
for example, by comparing the reduced model con-
taining no phylogenetic term (e.g., with Pagel’s �=
0) with the full model including phylogeny. However,
in the phylogenetic literature, the term “phylogenetic
signal” is associated with the magnitude of phylogenetic
correlations in the branch-length transform (e.g., Pagel’s
�) that is estimated during model fitting (Blomberg et al.,
2003; Revell et al., 2008). Phylogenetic signal is akin to
the marginal R2

glmm(r) which is based on partitioning
variances into a correlated component (due to random
effects) and uncorrelated residuals. Phylogenetic signal
is thus a description of the phylogenetic correlations,
rather than a measure of how important are the phylo-
genetic correlations in the goodness-of-fit of the model.
Therefore, I think it is best to make a clear conceptual
difference between partial R2s giving information about
the statistical significance of phylogenetic correlations in
the model, and phylogenetic signal that gives a measure
of their magnitude.

Applications to LMM, PGLS, GLMM, and PGLMM
For both continuous data (LMM and PGLS) and

discrete data (GLMM and PGLMM), all R2s had good
performance, without one standing out as obviously the
best. For the simple model with a single regression coef-
ficient �1 and single covariance parameter � (equation
18), all R2s were reasonable measures of goodness-of-fit,
as assessed against the LLR between full and reduced
models (Fig. 2). Nonetheless, R2

resid and R2
pred gave lower

R2 values for variation explained by fixed effects (�1)
than random effects (�) in comparison to R2

lik and the LLR
(Fig. 2). Also, although all three R2s gave very similar
values for the same data set with continuous data, the
values differed more for discrete data fit with either
GLMM or PGLMM (Fig. 2 and Supplementary Section
1 available on Dryad). This is reflected in general by

the decreased precision of the R2s applied to discrete
data, as measured by the variation in values when fit
to data simulated under the same parameter values
(Fig. 4). All R2s were capable of identifying whether
�1 or � was responsible for the fit of the model to the
data as determined by the partial R2s; when �1 or �

were zero in the simulations, the partial R2s for �1 or
�, respectively, were low (Fig. 3). However, the partial
R2s for GLMM and PGLMM tended to be more variable
and less conclusive that for LMM and PGLS (Fig. 3).
Also, partial R2

resid and R2
pred can sometimes be negative,

but negative values of R2
lik are not possible as long as

the full and reduced models are fitted correctly. Finally,
R2

lik decreased as sample sizes decreased especially
for LMMs but also for GLMMs (Fig. 4). This is an
understandable consequence of the loss of information
to separate full and reduced models when there are fewer
data. Nonetheless, it is an undesirable property when
comparing across data sets with different sample sizes.

The poorer performance of all three R2s for GLMM
and PGLMM relative to LMM and PGLS in terms of
identifying sources of variation (Fig. 3) and precision
(Fig. 4) is due to the greater challenges of fitting discrete
data. This will affect the R2s differently if they are
differently sensitive to the fitting. R2

resid is calculated
from fitted variances in a model; R2

predis calculated from

the fitted values of Yi; and R2
lik is calculated from the

likelihood. Therefore, the three R2s will be sensitive
to the precision with which each of these attributes is
estimated. For GLMMs, the precision of R2

lik was slightly
greater than the other two R2s, although this did not
appear to be the case for PGLMM. Nonetheless, for
GLMMs and PGLMMs R2

resid and R2
pred can have negative

values especially for small sample sizes, while this is
never the case for R2

lik .

Recommendations
An ideal R2 would make it possible to compare among

different models and among different methods used
to fit the same model (Kvalseth, 1985 properties of
a good R2 #4 and #5). R2

resid and R2
pred can be used

for any model and fitting method that estimates the
covariance matrix (R2

resid) and/or fitted values (R2
pred);

for example, they could be used to compare LMMs fit
with ML vs. REML, or binary phylogenetic models fit
with ML (e.g., phyloglm; Ho and Ane, 2014) or quasi-
likelihood (e.g., binaryPGLMM; (Ives and Garland,
2014)). Nonetheless, R2

resid and R2
pred have a disadvantage

in terms of generality. For R2
resid a decision must be

made about how to weight the covariance matrix �(�)
(equation 9), and for R2

pred a decision has to be made
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about how values of Yi are predicted. In contrast, R2
lik

is restricted to models that are fit with ML estimation;
however, if ML is used for fitting, then values of R2

lik
can be compared across different types of models. This
applies to any type of data and model fit with ML
estimation.

An ideal R2 should also be intuitive (Kvalseth, 1985
property #1). However, intuitive is in the eye of the
beholder. R2

resid is similar to the OLS R2, which grounds
R2

resid in the familiar and intuitive OLS framework. R2
lik

is also related to the OLS R2: for LMMs and PGLS,
R2

lik is the same as the GLS R2 if the determinant of
�2�(�) is scaled to equal one. R2

pred predicts the data from
covariances estimated in the model, and therefore, it is
the most intuitive way to relate the variance explained
by regression coefficients (fixed effects) to that explained
by variance parameters (random effects). I think this is
the most intuitive R2. Therefore, if the question is how
much variation in the data is explained by a model, or
different components of a model, then I think R2

pred gives
the most direct answer.

An ideal R2 would make it possible to compare the
fit of one model to one data set, and the same model
to another data set; in other words, it should give an
overall sense of how well a model fits. For this, R2

resid
and R2

pred have the advantage over R2
lik in being relatively

insensitive to sample size (Fig. 4). Because R2
lik is based

on the likelihood ratio between full and reduced models,
all else being equal, it will decrease for smaller data
sets because there is less statistical power. If some data
sets are very small, R2

resid has the advantage over R2
pred

because for very small samples, R2
pred is more prone

to give negative values (although negative values of
R2

resid are possible for discrete data). Therefore, for broad
comparisons among different data sets using the same
model, I would use R2

resid.
R2s are often used as “summary statistics” to describe

the fit of a model to data in a way that does not involve
statistical inference about the underlying stochastic
process that generated the data: “How does the model
fit these data?” rather than “How much does the model
infer about the process that generated the data?” Should
R2s be judged as a summary statistic? I think not. All
the R2s showed high variation among simulations of the
same model with the same parameters, especially when
sample sizes were small (Fig. 4). This means that how
the model fits a specific data set involves a lot of chance,
and hence one should not get too excited about a high
R2, or too discouraged about a low one. R2s are best
treated as inferential statistics, that is, as functions of
a data-generating process that are themselves random
variables (Cameron and Windmeijer, 1996; Nakagawa
and Schielzeth, 2013). As an inferential statistic, R2

lik
most directly ties to hypothesis testing between full

and reduced models using a likelihood ratio test, and
therefore it is particularly valuable as a partial R2. I think
this makes R2

lik the best choice for investigating how well
a specific model fits a specific data set using partial R2s.
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http://dx.doi.org/10.5061/dryad.345v6.
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APPENDIX

SCALING VARIANCES IN GLMMS AND PGLMMS

GLMMs and PGLMMs are formulated without a
residual variance. Nonetheless, in algorithms used to
fit GLMMs and PGLMMs, terms arise that can be
interpreted as residual errors. These are important for
the formulation of R2s in two ways. First, they explain
why PGLMMs do not suffer the complications that
arise for PGLS in defining R2s. The “residual errors”
of PGLMMs never disappear, in contrast to the non-
phylogenetic residuals in PGLS models that often go
to zero. Second, the “residual errors” of GLMMs and
PGLMMs provide a way of computing the scaling
variance �2

d in R2
resid (equation 11).

Residual Errors in Fitting GLMMs and PGLMMs
For simplicity, consider the case of a binary GLMM

with only a single random effect and no fixed effects
other than an intercept:

P{yi =1|bi}=�i

g(�i)=�+bi

bi ∼Gaussian(0,�2
b) (A1)

In GLMM fitting algorithms including those of Schall
(1991), Breslow and Clayton (1993), and the Laplace
algorithm used in glmer() (Pinheiro and Chao, 2006),
the model is fit by constructing a covariance matrix in
the Gaussian space (second line in equation A1) given
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by V=W−1 +�2
bC. Here, �2

bC is the covariance matrix for
the random effects design matrix. W−1 is the diagonal
matrix containing the theoretical variances of εig′(�i)
where εi = (yi −�i) is the residual in the data space and
g′(�i) is the derivative of the link function evaluated at
the conditional value �i corresponding to datum yi. The
matrix W also appears in algorithms used to estimate
GLMs, and its diagonal elements are known as the GLM
iterated weights (McCullagh and Nelder, 1989). Because
the εig′(�i)s never all go to zero in a well-defined model,
they are treated as “residual errors” in the Gaussian
space.

The matrix V can be derived formally from the
likelihood function of the GLMM (Pinheiro and Chao,
2006). Heuristically, fitting the GLMM is analogous to
fitting the Gaussian-space model

zi =�+bi +εig
′(�i) (A2)

The algorithms of Schall (1991) and Breslow and Clayton
(1993) implement this expression iteratively, using the
“working” estimates of �i to compute the residuals
εig′(�i), and then treating equation (A2) as a GLS
regression to estimate �+bi and from these produce
“updated” estimates of �i. It is necessary to do this
iteratively, because in general the link function g(�i) is
nonlinear, so the residuals εig′(�i) depend on �i. The
same approach was adapted for phylogenetic models
by Ives and Helmus (2011). Because �i are generally
different for each datum i, the variances of εig′(�i),
denoted �2

w[i], will also differ for each i. This is depicted

in Figure 1 as variable lengths of �2
w[i] added to the tips

of the covariance trees for the GLMM and PGLMM.

GLMM and PGLMM Scaling Variances �2
d for R2

resid

R2
resid requires a scaling term �2

d for the variances
of fixed and random effects (equation 11). For binary
GLMMs with a logit link function, Nakagawa and

Schielzeth (2013) use �2
d =�2/3, the variance of the

logistic distribution, while they use �2
d =1 for the probit

link function. Nakagawa et al. (2017) give additional
approaches based on different approximation methods.
Comparing estimates of the random effects variances for
a binary GLMM fit with logit vs. probit link functions is a
useful way to assess the scaling term �2

d. Below I illustrate
that neither �2

d =�2/3 nor the delta approximation from
Nakagawa et al. (2017) give particularly good scaling
terms for binary GLMMs with a logit link function. I
also present two better alternatives.

To explore the accuracy of �2
d.NS =�2/3, consider the

estimates of the random effects variance for equation
(A1) using a logit vs. a probit link function, �2

b[logit]
and �2

b[probit]. If the scaling �2
d.NS is correct, then

�2
b[logit]/�2

d.NS should approximate �2
b[probit]; they will

not in general be exactly the same due to differences
in the fits of the logit and probit GLMMs. In a simple
simulation study (see Supplementary Section 2 avail-
able on Dryad), using �2

d.NS =�2/3 gives lower values
�2

b[logit]/�2
d.NS than �2

b[probit], implying that �2
d.NS =

�2/3 is too large (Fig. A1a).
There are two better alternatives. The first is 0.8768809

�2/3; call this the “reduced Nakagawa and Schielzeth”
�2

d denoted �2
d.rNS. �2

d.rNS is better than �2
d.NS (Fig. A1b)

for reasons explained in the next section.
The second alternative comes naturally from the

residual variances �2
w[i] arising from the estimation

algorithms for GLMMs. There is a technical complic-
ation: because �2

w[i] take on different values for each
datum i, how should these be combined to give a
single �2

w? The algorithms for fitting GLMMs scale
the total covariance matrix V according to the log
of its determinant, and this implies that �2

w should
be the geometric mean of the values of �2

w[i]. The
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FIGURE A1. Accuracy of three scaling methods for the random effects variance in the binary GLMM in equation (A1). In the left panel,
�2

b[logit]/�2
d.NS is plotted against �2

b[probit], where �2
d.NS =�2/3. In the center panel, �2

b[logit]/�2
d.rNS is plotted against �2

b[probit], where �2
d.rNS =

0.8768809�2/3. In the right panel, �2
b[logit]/�2

w[logit] is plotted against �2
b[probit]/�2

w[probit], where �2
w[logit] and �2

w[probit] are given in equation
(A3). One-hundred data sets with 10 levels of the random effect and a total sample size of 1000 were simulated and fit using the code provided
in Supplementary Section 2 available on Dryad.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy060/5098616 by guest on 13 N

ovem
ber 2018

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy060#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy060#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy060#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy060#supplementary-data


Copyedited by: MANUSCRIPT CATEGORY: Regular Manuscript

[16:59 18/10/2018 Sysbio-OP-SYSB180063.tex] Page: 16 1–19

16 SYSTEMATIC BIOLOGY

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RNS
2 [probit]

R
N

S
2

[lo
gi

t]

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RdeltaNS
2 [probit]

R
d

e
lt

a
N

S
2

[lo
gi

t]

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

RrNS
2 [probit]

R
rN

S
2

[lo
gi

t]

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Rw
2[probit]

R
w2 [lo

gi
t]

FIGURE A2. Accuracy of four scaling methods for R2
resid in a GLMM (equation A1) determined by plotting values from a logit link function

against values from a probit link function. One-hundred data sets with 10 levels of the random effect and a total sample size of 1000 were
simulated and fit using the code provided in the Supplementary Section 2 available on Dryad.

probit and logit random effects variances should be
scaled by �2

w[probit] and �2
w[logit], respectively. Thus,

�2
b[logit]/�2

w[logit] should be approximately equal to
�2

b[probit]/�2
w[probit], which is the case (Fig. A1c).

From the performance of the scaling terms shown in
Figure A1, R2

resid computed with logit and probit link
functions should be more similar using either �2

d.rNS or
�2

w than using �2
d.NS. This is in fact the case (Fig. A2).

Nakagawa et al. (2017) discuss a number of other approx-
imations. In particular, although derived in a different
manner, the values of �2

d given by the delta method are
similar to �2

w, although they are computed using the
estimates of the mean and variance of the distributional
parameter (�i in the case of the binomial distribution),
rather than the GLM iterated weights that differ among
data points i. As shown in Figure A2, �2

d.rNS and �2
w

outperform the delta-method values of �2
d computed

with r.squaredGLMM() in the MuMIn package (Barton,
2018). The performances of the methods for calculating

�2
d depend on the details of the model, such as the

sample size and the number of levels of the random
effect; nonetheless, the patterns shown in Figure A2
are typical.

Using �2
w as a scaling term produces lower values of

R2
resid than the other methods. This is a consequence of

the other methods scaling �2
d =1 for the probit model,

whereas �2
w is less than 1 for probit models. Specifically,

for binomial, Poisson, and GLMMs in general,

�2
w[binomial(logit)]=Eg{n/(�i(1−�i))}

�2
w[binomial(probit)]=Eg{n�i(1−�i)/pdf(cdf(�i))

2}
�2

w[poisson]=Eg{1/�i}
�2

w[general]=Eg{g′(�i)var(yi −�i)} (A3)

where Eg{} is the geometric mean, and pdf () and cdf () are
the probability density and cumulative density functions
for a Gaussian distribution. An advantage of using �2

w
is that it generalizes to any distribution used in the
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FIGURE A3. Threshold formulations of the GLMM in equation (A1) for probit (a–c) and logit (d–e) link functions. (f) Gives the probability
density functions for a logistic distribution (solid), Gaussian distributions with variances �2

d.rNS =0.8768809�2/3 dotted), and �2
d.NS =�2/3 dashed).

GLMM and is easy to compute from glmer() (Bates
et al., 2015) and binaryPGLMM() (Ives and Garland,
2014). A disadvantage, however, is that it takes a different
conceptual approach and gives lower values than �2

d.NS =
�2/3 (Nakagawa and Schielzeth, 2013) that is becoming
established in the literature. Furthermore, the value of
�2

w depends on the estimates of �i, and for small sample
sizes or poorly fitting models, these estimates may not
be well behaved.

The Threshold Formulation of GLMMs and �2
d.rNS

Where does �2
d.rNS come from? The original �2

d.NS =
�2/3 arises naturally when onsidering the threshold
or latent-state formulation of GLMMs (for a historical
summary, see Hadfield, 2015). The binary GLMM of
equation (A1) can be equivalently formulated as

P{Yi =�i|bi}=FD{�+bi|bi}
bi ∼Gaussian(0,�2

b) (A4)

where FD is the cumulative density function of the
distribution corresponding to the link function; these
are Gaussian and logistic distributions for probit and
logit link functions, respectively. Equation (A4) can be
seen as a threshold model by noting that FD{�+bi|bi} is
the probability PD{Zi <�+bi|bi} where �+bi|bi serves as
the threshold (e.g., Hadfield, 2015; de Villemereuil et al.,
2016). This is depicted in Figure A3a for a probit link
function in which FD{Zi =�+bi|bi} is the shaded area

under Gaussian probability density function to the left
of �+bi|bi. The threshold �+bi|bi is conditional on the
specific values of bi. For the GLMM, the marginal value of
the threshold �+bi is a Gaussian distribution with mean
� and variance �2

b (Fig. A3b). Therefore, the threshold
model for a single point i can be written as a convolution

P{Yi =�i}=
∫

FD{Zi|bi}pN(bi|�0,�
2
b)d� (A5)

where pN(bi|�0,�
2
b) is the Gaussian probability density

function with mean � and variance �2
b , and Zi =g(�i).

For the case of a probit link function when FD is the
cumulative density function of a N(0, 1) distribution, this
convolution is just the cumulative density function of
a N(�,1+�2

b) distribution, leading to another Gaussian
threshold model (Fig. A3c).

For the logit link function, the same arguments follow
(Fig. A3d,e). A complication occurs, however, because
FD{Zi|bi} in equation (A5) is the cumulative density
of a logistic distribution, rather than the Gaussian
distribution as it is for the probit link function. The
assumption �2

d.NS =�2/3 is akin to approximating the
logistic FD{Zi|bi} with a Gaussian cumulative density
function with the same variance, namely �2/3. This is not
very accurate, however, because the logistic distribution
is leptokurtic relative to the Gaussian distribution (Fig.
A3f). Instead, a better approximation can be made by
selecting the variance of the Gaussian distribution to
give a better match to the logistic cumulative density
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function. A simple least-squares match gives �2
d.rNS =

0.8768809�2/3. While this is ad hoc, it works pretty well
(Figs. A1 and A2).

Although this appendix has focused on GLMMs,
identical arguments apply to PGLMMs.
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