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Summary

1. The rise in the use of statistical models for non-Gaussian data, such as generalized linear models (GLMs) and

generalized linear mixed models (GLMMs), is pushing aside the traditional approach of transforming data and

applying least-squares linear models (LMs). Nonetheless, many least-squares statistical tests depend on the

variance of the sum of residuals, which by the Central Limit Theorem converge to a Gaussian distribution for

large sample sizes. Therefore, least-squares LMs will likely have good performance in assessing the statistical sig-

nificance of regression coefficients.

2. Using simulations of count data, I compared GLM approaches for testing whether regression coefficients

differ from zero with the traditional approach of applying LMs to transformed data. Simulations assumed that

variation among sample populations was either (i) negative binomial or (ii) log-normal Poisson (i.e. log-normal

variation among populations that were then sampled by a Poisson distribution). I used the simulated data to

conduct tests of the hypotheses that regression coefficients differed from zero; I did not investigate statistical

properties of the coefficient estimators, such as bias and precision.

3. For negative binomial simulations whose assumptions closely matched the GLMs, the GLMs were nonethe-

less prone to type I errors (false positives) especially when there was more than one predictor (independent)

variable. After correcting for type I errors, however, the GLMs provided slightly better statistical power than

LMs. For log-normal-Poisson simulations, both a GLMM and the LMs performed well, but under some

simulated conditions theGLMs had high type I error rates, a deadly sin for statistical tests.

4. These results show that, while GLMs have slight advantages in power when they are properly specified, they

can lead to badly wrong conclusions about the significance of regression coefficients if they are mis-specified. In

contrast, transforming data and applying least-squares linear analyses provide robust statistical tests for signifi-

cance over a wide range of conditions. Thus, the traditional approach of transforming data and applying LMs is

still useful.

Key-words: generalized linear mixed models, generalized linear models, least-squares regression,

linearmodels, transformation, type I errors

Introduction

The last several decades have seen a huge growth in the

availability and use of statistical methods for non-Gaussian

data. Generalized linear models (GLMs) that can accommo-

date binomial, Poisson and negative binomial data are now

commonplace (McCullagh & Nelder 1989). There has been

a parallel, though delayed, growth in generalized linear

mixed models (GLMMs) that additionally account for non-

independence in the response (dependent) variable that arise

from, for example, repeated measures on the same individual

or at the same location (Gelman & Hill 2007; Bolker et al.

2009). With this rise in methods for non-Gaussian data,

there are understandable calls for discarding the traditional

approach of transforming data and then applying simple

linear models (LMs) (O’Hara & Kotze 2010; Warton & Hui

2011; Steel et al. 2013).

But should we give up on transforming non-Gaussian data

and applying linear models? The answer depends on the ques-

tion being asked (Bolker et al. 2009). Probably the most com-

mon use of statistical tests in ecology and evolution is to ask

whether a response variable depends on one or more predictor

(independent) variables. The traditional approach to this prob-

lem would be to transform the data and fit a least-squares lin-

ear model (LM) of the form y = b0 + b1x + e where e’s are

assumed to be independently and identically distributed. The

test statistics of the regression coefficients depend on the vari-

ance of the sum of e’s, which by the Central Limit Theo-

rem approaches a Gaussian distribution with increasing

sample size regardless of the actual distribution of e (provided
the mean and variance of e are well defined). In fact, the*Correspondence author. E-mail: arives@wisc.edu
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approach to a Gaussian distribution can be fast, with a Gauss-

ian approximation quite good even with sample sizes <40.
Furthermore, least-squares linear regression is unbiased and

has the lowest variance of all non-biased estimators of regres-

sion coefficients (Judge et al. 1985). Therefore, although the

distribution of e may be complicated for non-Gaussian data,

statistical tests based on their sum can be very good. There are

still important problems that are not overcome by the Central

Limit Theorem. Because non-Gaussian distributions typically

have variances (and higher moments) that depend on the mean

(McCullagh & Nelder 1989), non-Gaussian data are generally

transformed before analysis (Sokal & Rohlf 1981). It is then

necessary to perform diagnostics on the analyses to make sure

the approximation to a LM is reasonably good. Furthermore,

a limitation of the transformation-LM approach is that the

resulting fitted model will not correctly describe the data: it is

not possible to use a strictly Gaussian model to simulate non-

Gaussian data, and the parameters in the LM might not have

clear biological interpretations. Nonetheless, when asking sim-

ply whether y depends on x, transforming data and analysing

them with a least-squares LMmight be adequate; in statistical

analyses, simpler is often better (Murtaugh 2007).

Statistical methods designed for non-Gaussian data have

their own limitations – both technical and cultural limitations.

The technical limitations stem from the mathematical and

computational complexity of GLMs and GLMMs (McCul-

lagh & Nelder 1989; Linden & Mantyniemi 2011; Okamura,

Punt &Amano 2012; Bates et al. 2014). For example, incorpo-

rating complicated correlation structures into GLMMs, such

as spatial and phylogenetic correlations, poses challenges (e.g.

Ives&Helmus 2011; Ross,Hooten&Koons 2012; Ives &Gar-

land 2014). Similarly, many of the statistical results provided

by software packages for GLMs and GLMMs are themselves

approximations. For example, the P-values given for coeffi-

cient estimates of GLMs from glm {stats} in R (R Core Team

2014) are based on Gaussian approximations (Wald z tests);

thus, even though the model is exact, the statistical inference

that researchers use is approximate. Statistical inference about

parameters can also be derived from likelihood ratio tests,

although these are also based on asymptotic approximations.

The cultural limitation of GLMs and GLMMs is that,

because they model specific processes that a researcher might

assume underlie the data, they are accepted as correct without

careful attention to diagnostics (but see Gelman & Hill 2007;

Bolker 2008; Bates et al. 2014). GLMs and GLMMs make

explicit assumptions about the distribution of the data, and if

these assumptions are notmet by the data, the statistical results

could be quite wrong (e.g. Martin et al. 2005; O’Hara 2005;

Ver Hoef & Boveng 2007). Of course, the same is true for the

transformation-LM approach. The cultural limitation is that

researchers are often less cautious with GLMs and GLMMs

(because these methods are ‘correct’) than they are with LMs

applied to transformed data (which are obviously not correct).

Here, I compare statistical results from models for non-

Gaussian count data with results from LMs performed on

transformed data. The first set of comparisons use data

simulated from a negative binomial distribution. These com-

parisons are motivated by the article prescriptively entitled ‘Do

not log-transform count data’ in which O’Hara & Kotze

(2010) fit negative binomial data with GLMs and with LMs

following log-transformation. O’Hara and Kotze show that

GLMs give better estimates of the untransformed expectations

(means) thanLMs; theGLMestimates have less bias andmore

precision. In contrast to asking about the ability of different

methods to estimate expectations, I modified O’Hara and

Kotze’s code to produce a regression problem and askedwhich

methods give correct type I error rates and have the greatest

statistical power to identify statistically significant regression

coefficients. Therefore, the statistical task I address is different

from that of O’Hara & Kotze (2010), and as I show, the con-

clusions differ too.

The second set of comparisons addresses a situation that

frequently arises in ecology: when there are multiple popula-

tions experiencing different per capita population growth

rates, and each population is randomly sampled. Because

population growth is multiplicative, a reasonable a priori

assumption is that variation among populations is approxi-

mately log-normally distributed. Random sampling then

takes place in the form of a Poisson distribution. This situa-

tion leads to a hierarchical mixture model of Gaussian ‘pro-

cess variation’ in log abundances among populations and

Poisson ‘measurement variation’ of those abundances. I sim-

ulated data from this hierarchical model and fit GLMs, LMs

after transforming the data, and a log-normal-Poisson

GLMM that matched the simulation model. The question is

whether applying GLMs to ecological count data is better

than transforming data and using a LM for testing signifi-

cance of regression coefficients.

Materials andmethods

NEGATIVE BINOMIAL SIMULATIONS

Data sets were simulated from a negative binomial distribution whose

mean l depends on a predictor variable x according to

l ¼ exp ðb0 þ b1xÞ eqn 1

This contrasts with the simulation model used by O’Hara & Kotze

(2010) in which there was no x variable, and the statistical task was to

estimate l. In equation 1, x is assumed to take on n evenly spaced val-

ues, scaled so that the mean is zero and the variance is one. This makes

it possible to compare the effect of sample size n (n = 20 to 1000) with-

out changing the mean and variance of x. The values of the negative

binomial dispersion parameter hwere selected to generate distributions

ranging from highly aggregated (h = 0�25) with variances much higher

than themean to non-aggregated (h = 100) when the negative binomial

approaches the Poisson distribution and the variance equals the mean.

Values of b0 were investigated between log(0�2) and log(10) to vary the

mean from 0�2 to 10. Finally, to test the power of the methods to reject

the null hypothesis H0:b1 = 0, values of b1 in the simulations were

investigated between 0 and 0�8. The baseline parameter values thatwere

fixed while each of the parameters was varied in turn were n = 100,

h = 1, b0 = 0 and b1 = 0. For each combination of parameter values,

either 2000 (when b1 was varied to test for power) or 50 000 (when

varying the other parameters) simulated data sets were produced.
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The models fit to the simulated data overlap with those used by

O’Hara&Kotze (2010):

1 GLM inwhich y follows a negative binomial distribution;

2 GLM in which y follows a quasi-Poisson distribution to allow for

greater-than-Poisson variances;

3 LM with a log(max(y, 0�5)) transformation, in which zeros are

replaced by 0�5;
4 LM with a log(y + 1) transformation, in which one is added to all

values;

5 LM with a log(y + 0�0001) transformation, in which 0�0001 is

added to all values;

6 LMwith a sqrt(y) transformation; and

7 LM with no transformation of y, but using exp(x) as the predictor

variable.

These models were selected to have a range of characteristics. Model

1 has the same distributional assumptions as the negative binomial sim-

ulations. Model 2 matches the negative binomial simulations when h is
large and the negative binomial approaches a Poisson distribution;

when h is small (giving an aggregated distribution), the dispersion

parameter of the quasi-Poisson distribution should account for the

increased variance. Models 3 and 4 use standard variants of log trans-

forms. Model 5 is a non-standard log-transformation that might be

(incorrectly) assumed to perform well because it changes the data the

least; in fact, it changes the data more than other log-transformations,

because the value of log(0�0001) is much smaller than log(1�0001).
Model 6 is a ‘bad’ transform that will match neither the relationship

between l and x, nor the relationship between the variance of e and x.

Finally, model 7 matches the relationship between l and x, but the

assumption about the relationship between the variance of e and x is

particularly bad.

For each simulated data set, all sevenmodels were fit and used to test

the null hypothesis H0:b1 = 0 at the a = 0�05 significance level using

the glm {stats}, glm.nb {MASS} (Venables & Ripley 2002) or lm

{stats} functions in R (R Core Team 2014). For the negative binomial

model 1, significance of b1 was tested using both a Wald test (given by

glm.nb) and a likelihood ratio test (LRT). Both Wald and LRTs were

tried for the quasi-Poisson model 2, although the performance of the

Wald test was uniformly better and therefore only presented here. The

proportion of the simulated data sets for which the null hypothesis was

rejected gives the type I error rate if b1 = 0 in the simulations, or the

power of the tests if b1 6¼ 0.

Ecological and evolutionary data will often contain multiple predic-

tor variables, raising the problem of multicollinearity in identifying

which predictor variables are associated with variation in the response

variable. To address this, I simulated negative binomial datawith

l ¼ exp ðb0 þ b1x1 þ b2x2Þ eqn 2

where x1 and x2 are drawn from a bivariate normal distribution with

correlation coefficient r ranging from 0 to 0�9. After picking values of

x1 and x2, both variables were standardized to havemean zero and var-

iance one. Note that in this procedure, x1 and x2 were randomly gener-

ated for each data set, whereas for equation 1 x was taken at even

increments. For the bivariate simulations, model 7 was not fit, because

x1 and x2 are not additive. In the simulations, b2 = 1 which represents a

strong effect of x2 on y. Therefore, when the correlation r between x1
and x2 is high,multicollinearity could affect the test ofH0:b1 = 0.

LOG-NORMAL-POISSON HIERARCHICAL SIMULATIONS

Because the total growth rate of a population is proportional to the

population size, Gaussian variation in per capita population growth

rates leads to approximately log-normal variation in population sizes

when populations are large. To incorporate both log-normal variation

in population size (process variation) and random sampling (measure-

ment variation), I simulated data with the hierarchical model

k ¼ exp ðb0 þ b1xþ eÞ
y�Poisson (k)

eqn 3

where e is a Gaussian random variable with mean zero and standard

deviation r. Simulations were performed with r ranging from 0 to 2

with b1 = 0 to test for type I errors. Each simulated data set was fit with

the models used previous, excluding model 5, plus a GLMM with the

same form as the simulationmodel (Eqn. 3) fit using glmer (Bates et al.

2014).

Results

NEGATIVE BINOMIAL DATA

The GLMs (models 1 and 2) were more prone to type I errors

(false positives) than LMs with transformed data (Fig. 1).

Type I error is an especially unwanted property of any statisti-

cal method, because it will lead to false conclusions about pat-

terns in the data. For the negative binomial GLM, the LRT

provided better type I errors than theWald test; this is not sur-

prising, because theWald test is in general a better approxima-

tion than a LRT (Engle 1984). Even using the LRT, type I

errors were serious for the negative binomial GLMwhen sam-

ple size was small (Fig. 1a) or dispersion in the simulated data

was large (small h, Fig. 1b). This is surprising, because the data
were simulated using a negative binomial distribution. The

quasi-Poisson GLM often had better performance than the

negative binomial GLM, although it had highly inflated type I

errors in the case ofmultiple regression (Fig. 1d).

All of the LMs with transformed data had very acceptable

type I error rates. This was true even for b0 = log(0�2) = �1�61
(Fig. 1c), when the mean of y is 0�2 and on average 83% of the

data points in the simulations were zeros. For the case ofmulti-

ple regression, even highly correlated predictor variables did

not exaggerate the type I error rates for the LMs (Fig. 1d),

showing that least-squares LMs with transformed data were

relatively insensitive to multicollinearity for the sample size of

n = 100. The uniformly acceptable performance of the LMs

even for ‘bad’ transformations (models 6 and 7) that violate

the true relationship between themean of y and x, and between

the variance of y and x, shows the robustness of LMs.

In the simulations to determine power, b1 ranged from 0 to

0�8, and over this range, the proportion of data points equal-

ling zero remained close to 0�5 for the baseline value of h = 1.

Because the LRT gave better type I error rates than the Wald

test for the negative binomial GLM, I only included the LRT

results. Furthermore, because even the LRThad inflated type I

errors (Fig. 1a), I used a likelihood ratio critical value of 3�98
rather than the critical value of 3�84 given by the standard

LR v2 approximation; this value gave a correct type I error rate

of 0�05. The negative binomial and quasi-Poisson GLM

models (models 1 and 2) had the greatest power to reject the

hypothesis H0:b1 = 0 at the a = 0�05 significance level (Fig. 2).
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Nonetheless, the power of the LMs with transformed response

variables log(max(y, 0�5)) and log(y + 1) (models 3 and 4) was

not much lower; for example, the chances of rejecting H0:

b1 = 0 when the simulation value of b1 = 0�3 was 0�57 and 0�56
for the negative binomial and quasi-Poisson models, and 0�52
and 0�51 for the LMs with log(max(y, 0�5)) and log(y + 1)

transformations. The LM with a sqrt(y) transformation and

the LM with y untransformed and exp(x) (models 6 and 7)

were also not bad. Only the LM with log(y + 0�0001) (model

5) showed a large loss of power, although I included this model

only to illustrate that extremely bad transformations can cause

loss of performance. For standard log(max(y, 0�5) and log

(y + 1) transformations, however, the performance of LMs is

close to that ofGLMs.

The (slight) loss of power of the LMs is caused because they

do not properly account for the point-by-point variance in the

data. Specifically, while LS linear regressionminimizes the sum

of squared differences between predicted and observed values,

GLMs minimize the squared deviances, where the deviances

account for the non-Gaussian distributions of the data. To

explain this heuristically with an extreme example, consider the

case in which y is perfectly predicted by x. If y has a negative

binomial distribution, then there will still be variance in y given

x (i.e. non-zero deviances), and this is correctly included in the

GLM. In contrast, if y has aGaussian distribution and y is per-

fectly predicted by x, then there will be no residual variation in

y given x. The LMwill reward this case by giving strong statis-

tical significance to b1. However, in the case of y having a nega-

tive binomial distribution, the LM will interpret the

(unavoidable) variance in y given x as unexplained variation

and tax the statistical significance of b1 accordingly. This taxa-

tion in turn leads to a reduction in the chances that the LM test

will reject the null hypothesis.

LOG-NORMAL-POISSON HIERARCHICAL DATA

The log-normal-Poisson model simulates data that are com-

mon in ecological and evolutionary studies: samples are taken

randomly from multiple populations that experience variation

in per capita population growth rates. For the simulated data,

on average 40% of the data points were zeros. All of the LMs

(models 3, 4, 6 and 7) had very acceptable type I error rates. In
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Fig. 1. Type I error rates (false positives) for the null hypothesisH0:b1 = 0 at the a = 0�05 significance level for seven regressionmodels while varying

(a) the sample size n, (b) the dispersion parameter of the negative binomial distribution h, (c) the intercept b0 and (d) the correlation between two pre-
dictor variables x1 and x2 for a multiple regression model. At each value of the specified variable, 50 000 data sets were simulated from a negative

binomial model (a–c, Eqn. 1; d, Eqn. 2). Tests of H0:b1 = 0 were taken from the standard output from glm {stats}, glm.nb {MASS} and lm {stats}
in R, and in addition, a LRT was used for glm.nb. The black dotted line gives the nominal 0�05 level for which 5% of the simulated data sets should

be rejected at the a = 0�05 significance level. The baseline parameter values that were fixed while changing the specified parameter values in a–dwere
b1 = 0, n = 100, h = 1, b0 = 0 and for d b2 = 1. Lines correspond to model 1 with aWald test (negbin), model 1 with a LRT (negbinLRT), model 2

(qpois), model 3 (logmin), model 4 (log1), model 5 (log0001), model 6 (sqrt) andmodel 7 (lm).
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fact, the type I error rates were better than those for the log-

normal-Poisson GLMM, which had slightly inflated type I

error rates even though the statistical model matched the simu-

lation model used to produce the data. Both of the GLMs had

unacceptably high type I errors for larger variation among

populations (r, Fig. 3). Apparently, bothGLMs are incapable

of accounting for the log-normal process variation among

populations. This is surprising for the negative binomial

GLM, because the log-normal distribution is similar to a

gamma distribution, and a hierarchical gamma-Poisson distri-

bution is in fact a negative binomial distribution.

Because the type I errors for the negative binomial and

quasi-Poisson GLMs were so poor, I did not produce power

curves. If type I errors are seriously inflated, you should aban-

don the statistical model or use simulation techniques to cor-

rect the type I error rates. Inflated type I error rates will also

falsely inflate power, so any apparent performance benefit over

other statistical models is immediately suspect.

The surprising type I errors of the negative binomial GLM

could have several causes: (i) incorrect specification of the rela-

tionship between the mean of y and x (linearity), (ii) incorrect

specification of the relationship between the mean and vari-

ance (scedasticity), (iii) incorrect specification of the higher

moments of the distribution. To investigate these, I simulated

both negative binomial and log-normal-Poisson data, and fit

the data with a negative binomial GLM (Fig. 4). Both simula-

tion models have the same relationship between the mean of y

and x given by equations 1 and 3, and they have the same

relationship between the mean and variance (Fig. 4a) which

can be proved analytically (Ben Bolker, McMaster University,

pers. comm.). Therefore, any difference in the performance of

the negative binomial GLM between the negative binomial

and log-normal-Poisson simulationsmust be due to (iii), model

mis-specification of the skew and higher moments. Indeed, the

skew (Fig. 4b) and higher moments (not shown) of the log-

normal-Poisson datawere lower than for the negative binomial

data. Thus, the negative binomial GLMmis-specifies the skew

and highermoments of the log-normal-Poisson data.

The consequence of this mis-specification is that the negative

binomial GLMunderestimates the variance of the log-normal-

Poisson distribution. To illustrate this, I simulated both nega-

tive binomial and log-normal-Poisson data sets across a range

of variation (h = 0�25, 0�5, 1, 5, 100; r = 0, 0�25, 0�5, 0�75, 1)
and for each data set computed the observed variance/mean2

(V/M2) as a measure of variation. For each data set, I then fit

the GLM to estimate the dispersion parameter h and compute

the estimated V/M2 under the negative binomial assumption

of the GLM, namely V/M2 = (1 + M/h)/M. Plotting the aver-

age estimated V/M2 for each value of h or r against the

observed V/M2 shows that the fitted negative binomial GLM

correctly describes the variance of the negative binomial data

sets, but underestimates the variance of the log-normal-Poisson
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a = 0�05 significance level for seven regressionmodels. At each value of

b1 (b1 = 0, 0�05, 0�1, . . ., 0�8), 2000 data sets were simulated from a neg-

ative binomial model (Eqn. 1). Tests of H0:b1 = 0 were taken from the

standard output from glm {stats} and lm {stats} in R, and for the nega-
tive binomial GLM (glm.nb), a LRT was performed with a threshold

of 2*LR = 3�98 (rather than 3�84) to give correct type I errors. The

black dashed line gives the nominal 0�05 level forwhich 5%of the simu-

lated data sets should be rejected at the a = 0�05 significance level.

Other parameter values were n = 100, h = 1 and b0 = 0. Lines corre-

spond to model 1 with a LRT (negbinLRT), model 2 (qpois), model 3

(logmin), model 4 (log1), model 5 (log0001), model 6 (sqrt) andmodel 7
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Fig. 3. Type I error rates for the null hypothesis H0:b1 = 0 at the

a = 0�05 significance level for simulated data from a hierarchical log-

normal-Poisson model (Eqn. 3). At each value of the standard devia-

tion of the log-normal distribution r, 10 000 data sets were simulated.

Tests of H0:b1 = 0 were taken from the standard output from glm

{stats}, lm {stats} and glmer {lme4} inR, and for the negative binomial

GLM (glm.nb), a LRT was performed. The black dotted line gives the

nominal 0�05 level for which 5% of the simulated data sets should be

rejected at the a = 0�05 significance level. The fixed parameter values

were n = 100, r = 1, b0 = 0 and b1 = 0. Lines correspond to model 1

with a LRT (negbinLRT), model 2 (qpois), model 3 (logmin), model 4

(log1), a log-normal-Poisson GLMM (glmm), model 6 (sqrt) and

model 7 (lm).
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data sets (Fig. 4c). Presumably, this is due to the smaller skew

and higher moments of the log-normal-Poisson relative to the

negative binomial distribution (Fig. 4b). The type I errors are

higher for the log-normal-Poisson data sets, becoming worse

as the observedV/M2 increases (Fig. 4d), which coincides with

greater underestimates of the observed V/M2 (Fig. 4c). Thus,

the likely source for inflated type I error rates of the negative

binomial GLM is the smaller skew and higher moments of the

log-normal-Poisson data that lead to underestimates of the

variance; the resulting low estimates of the variance in the

GLM imply stronger information (less variability) in the data

than really exists.

Discussion

For detecting a dependence of a response y variable to a pre-

dictor x variable, the strategy of transforming count data and

using least-squares LMs proved to be pretty good. When

applied to count data generated from a negative binomial dis-

tribution, the type I error rates were correct (Fig. 1), and there

was only slight loss of statistical power compared to GLMs

(Fig. 2) provided a sensible log-transformation was used

(either log(max(y, 0�5)) or log(y + 1)). Similarly, when applied

to hierarchical data with log-normal variation among popula-

tions that are sampled by a Poisson distribution, the type I

error rates of LMs with transformed data were actually better

than those of a log-normal-Poisson GLMM (Fig. 3). These

results suggest that if you are interested in the significance of

regression coefficients, you can go ahead and log-transform

count data.

In contrast, the GLMs sometimes performed worse than the

LMs, sometimes much worse. The negative binomial GLM

had surprisingly inflated type I error rates for small sample

sizes (Fig. 1a). Because LM tests rely on the Central Limit

Theorem, LMs might be expected to perform worse than

GLMs when sample sizes are small, but this is the opposite

from what the simulations show. When used for multiple

regression in which one predictor variable had a strong effect

(b2 = 1), the quasi-Poisson GLM test for significance of the

other predictor variable had highly inflated type I errors
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Fig. 4. Negative binomial (Eqn. 1) and log-normal-Poisson (Eqn. 3) simulation data and statistical fits of the negative binomial GLM. Data were

simulatedwith no predictor (independent) variable (i.e. b1 = 0). (a) The relationship of the variance/mean2 ratio (V/M2) to themean, and (b) the rela-

tionship of the skew/mean3 ratio (Skew/M3) to the mean for simulated negative binomial (black) and log-normal-Poisson (red) data. For the nega-

tive binomial simulations, h = 0�62 and b0 ranges from log(0�1) to log(2�5); for the log-normal-Poisson simulations, r = 1 and b0 ranges from log

(0�05) to log(1�5). (c) The mean estimatedV/M2 = (1 + M/h)/M versus the mean observedV/M2 from the data sets. The black dashed line gives the

1:1 line. (d) Type I errors for the negative binomial GLM applied to the simulated negative binomial (black) and log-normal-Poisson (red) data ver-

sus the observed V/M2. Tests of H0:b1 = 0 were performed with a LRT using output from glm.nb {MASS} in R. The black dashed line gives the

nominal 0�05 level forwhich 5%of the simulated data sets should be rejected at the a = 0�05 significance level. For c and d, 10 000 data sets were sim-

ulated at each value of the parameters governing dispersion in the negative binomial (h = 0�25, 0�5, 1, 5, 100) and log-normal-Poisson (r = 0, 0�25,
0�5, 0�75, 1)models. The other parameter values were n = 100 and b0 = 0.
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(Fig. 1d). Finally, both negative binomial and quasi-Poisson

GLMs had unacceptable type I error rates when applied to the

log-normal-Poisson hierarchical data (Fig. 3). These results

suggest that if you are going to apply GLMs to count data,

make sure you perform diagnostics and simulations to confirm

your results.

This is not to say that GLMs are not useful, just that they

should be used cautiously. For example, if the goal is to fit a

model that can be used to simulation count data, then GLMs

must be used. In contrast, the approach of log-transforming

count data and applying a least-squares LM gives the expecta-

tion of the transformed variable y for a given value of x, but

does not give a fully specified model of a stochastic process

underlying count data. Thus, while the meaning of the regres-

sion coefficients for transformed data in a LM is clear, it is not

clear how these relate to the back-transformed data. Further-

more, at least for the mean b0, O’Hara & Kotze (2010) show

that the back-transformed estimates are not as good as those

from GLMs. Nonetheless, GLMs make more and somewhat

more-hidden assumptions about the distribution of the data

than doLMs. For example, a negative binomialGLMassumes

that the variance scales according to l(1 + l/h), while the

quasi-Poisson GLM assumes the variance scales according to

/lwhere/ is a dispersion parameter; this contrast can give dif-

ferent results between these two GLMs (Ver Hoef & Boveng

2007). In the case investigated here comparing negative

binomial and log-normal-Poisson data, the variance-to-mean

relationship was the same for both distributions, yet the log-

normal-Poisson data had lower skew and other moments. The

estimate of the parameter h from the negative binomial GLM

consistently underestimated the observed variance of the log-

normal-Poisson data, and this apparently inflated the type I

error rates. Thus, even though the negative binomial GLM

assumed the correct variance-to-mean ratio, it nonetheless did

not fit the distributional characteristics (skew and higher

moments) of the data well enough to give accurate significance

tests for the regression coefficient.

Even if the assumptions of a GLMmatch the data, the tests

that they provide for statistical significance of the regression

coefficients are based on asymptotic assumptions guaranteed

to be accurate only as sample sizes get large. Therefore, unlike

the LMs applied to transformed data in which the model is

approximate but the significance tests are exact, for GLMs, the

modelmight be exact but the significance tests are still approxi-

mate. Furthermore, different approximate statistical tests have

different performance. For example, the LRT for the negative

binomial GLM gave more reliable type I errors than the Wald

test, although the LRTs still gave worse type I errors than the

log-transformation LMs.

For any regression model, LM or GLM, it is necessary to

perform diagnostics to check (i) the relationship between the

mean of y and x; (ii) the relationship between the mean and

variance (scedasticity) and (iii) the higher moments of the dis-

tribution of residuals. For LMs linearity can be corrected using

transforms, although these will also affect scedasticity. To cor-

rect for heteroscedasticity without changing linearity, weighted

least-squares regression (or equivalently generalized least

squares) can be used. For least-squares LMs, the only way to

address higher moments is to have large sample sizes so that

the sum of residuals is more Gaussian. For GLMs, linearity

can be corrected without changing scedasticity by using a dif-

ferent link function (McCullagh & Nelder 1989; Bolker 2008).

Although GLMs make rigid distributional assumptions about

the relationship between the variance (and higher moments)

and mean, there are several GLMs or GLMMs that can be

tried; for example, the log-normal-Poisson GLMM provided

much better tests than the GLMs when applied to data with

less-than-negative-binomial skews (Fig. 3). Hopefully, the

results presented here encourage careful selection of GLMs.

This is whereGLMs andGLMMs have a huge advantage over

LMs. Because GLMs and GLMMs give a model fit to the

data, they can be used to simulate data to explore their type I

error rates, estimation bias and investigate other important sta-

tistical properties.

I have only considered count data given by Poisson-related

distributions in application to regression. Nonetheless, the

same conclusions about the performance of least-squares LMs

applied to transformed data likely apply to other types of data

and analyses. A pair of papers by Johnson, Campbell and

Capuano (Campbell, Young &Capuano 1999; Young, Camp-

bell & Capuano 1999) consider ANOVAS applied to count data

and show that LMs have better type I error rates than GLMs

for identifying treatment effects.Warton&Hui (2011) use sim-

ulations to evaluate statistical tests for differences in the means

of two samples of binomially distributed data, either without

or with additional overdispersion generated by using a logit-

normal-binomial hierarchical model (their Fig. 3, Appendix

S1C–F). Their logistic (binomial) GLM showed inflated type I

errors when either sample sizes were small or the data were

overdispersed, while their logitnormal-binomial GLMM

showed inflated type I errors when there were both small sam-

ple sizes and overdispersion. In contrast, applying LMs to arc-

sine-transformed data, or even untransformed data, showed

appropriate type I error rates, much better than either GLM

or GLMM. To correct for type I errors shown by GLMs and

GLMMs, Warton and Hui recommend bootstrapping. Once

GLMs andGLMMs are corrected for type I errors using boot-

strapping, they have only slightly greater power compared to

LMs (Warton & Hui 2011; Appendix S1F). Therefore, even

though Warton & Hui (2011) conclude that using the LMs is

‘asinine’, if the goal is to test for differences in means among

samples, then their results show that LMs give a robust

approach.

Although I only investigated GLMs in detail, there could

potentially be similar problems with GLMMs that are hard to

diagnose. GLMMs are considerably more complex computa-

tionally and statistically than their Gaussian linear mixed

model (LMM) counterparts, which suggests transforming data

and applying LMMs might be a good strategy when signifi-

cance tests are all that is needed. Furthermore, while there are

new methods for GLMMs that can incorporate complex spa-

tial (e.g. Venables & Ripley 2002; Ross, Hooten & Koons

2012) and phylogenetic (e.g. Hadfield 2010; Ives & Helmus

2011) correlations, these can be difficult to both apply and
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validate. In a simulation study of statistical methods for phylo-

genetically correlated binary (binomial) data, the simple

approach of applying a phylogenetic LMM and ignoring the

binary nature of the data gave better tests for the significance

of regression coefficients thanGLMMs and other phylogenetic

methods designed for binary data (Ives &Garland 2014).

This work was motivated by a reviewer of a manuscript

which included analyses of the distribution of species abun-

dances among multiple sites with spatial correlation. The

reviewer sympathetically acknowledged the absence of a sim-

ple way of doing the analyses with GLMMs but nonetheless

asked for justification of our approach of transforming data

and using a LMM. Before performing the analyses presented

here, I expected that LMs with transformed data would

show good type I error rates and moderate loss of power

compared to GLMs and GLMMs, but I was not expecting

the sometimes badly inflated type I error rates of the GLMs.

These simulations show that the inappropriate application of

GLMs can lead to wrong statistical conclusions. Nonethe-

less, this article should not be used as an argument against

the appropriate use of GLMs and GLMMs. I will continue

to use GLMs and GLMMs when I want a completely speci-

fied model of a statistical process, but now I will use even

more caution.
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