
20

20 INVITED FEATURE Ecological Applications
Vol. 16, No. 1

Ecological Applications, 16(1), 2006, pp. 20–32
q 2006 by the Ecological Society of America

STATISTICS FOR CORRELATED DATA: PHYLOGENIES, SPACE, AND TIME

ANTHONY R. IVES1,3 AND JUN ZHU2

1Department of Zoology, University of Wisconsin–Madison, Madison, Wisconsin 53706 USA
2Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin 53706 USA

Abstract. Here we give an introduction to the growing number of statistical techniques
for analyzing data that are not independent realizations of the same sampling process—in
other words, correlated data. We focus on regression problems, in which the value of a
given variable depends linearly on the value of another variable. To illustrate different
types of processes leading to correlated data, we analyze four simulated examples repre-
senting diverse problems arising in ecological studies. The first example is a comparison
among species to determine the relationship between home-range area and body size; be-
cause species are phylogenetically related, they do not represent independent samples. The
second example addresses spatial variation in net primary production and how this might
be affected by soil nitrogen; because nearby locations are likely to have similar net primary
productivity for reasons other than soil nitrogen, spatial correlation is likely. In the third
example, we consider a time-series model to ask whether the decrease in density of a
butterfly species is the result of decreases in its host-plant density; because the population
density of a species in one generation is likely to affect the density in the following
generation, time-series data are often correlated. The fourth example combines both spatial
and temporal correlation in an experiment in which prey densities are manipulated to
determine the response of predators to their food supply.

For each of these examples, we use a different statistical approach for analyzing models
of correlated data. Our goal is to give an overview of conceptual issues surrounding cor-
related data, rather than a detailed tutorial in how to apply different statistical techniques.
By dispelling some of the mystery behind correlated data, we hope to encourage ecologists
to learn about statistics that could be useful in their own work. Although at first encounter
these techniques might seem complicated, they have the power to simplify ecological
research by making more types of data and experimental designs open to statistical eval-
uation.

Key words: comparative methods; correlated data; geostatistical model; mixed model; phylo-
genetic correlation; statistical methods; time-series analysis.

INTRODUCTION

The first line in the description of many common
statistical tests is that the data represent independent
samples from the same statistical distribution; the sam-
pled observations must be identically and indepen-
dently distributed (iid). This often poses a problem for
ecologists, particularly those with observational (non-
experimental) data taken from similar species, in sim-
ilar locations, or at similar points in time. There is often
no guarantee that ecologists’ data represent indepen-
dent samples, and, in fact, there is often strong reason
to believe they do not. Even in experimental studies,
practical constraints may make randomized designs im-
possible. This may lead to pseudoreplication, in which
treatment replicates are not independent (Hurlbert

Manuscript received 22 April 2004; revised 19 August 2004;
accepted 24 August 2004; final version received 21 October
2004. Corresponding Editor: D. S. Schimel. For reprints of this
Invited Feature, see footnote 1, p. 3.

3 E-mail: arives@wisc.edu

1984). The need for independence, and the fear that
nonindependence generates, potentially limit the types
of studies that ecologists perform.

The limitations imposed by the need for indepen-
dence are being overcome, and there are several sta-
tistical approaches that are now commonly used by
ecologists that treat nonindependent, or correlated,
data. Perhaps the most familiar are repeated-measures
analyses (Snedecor and Cochran 1989: chapter 16.6,
Neter et al. 1996: chapter 29), especially repeated-mea-
sures ANOVA, in which multiple samples are taken
from the same individual, plot, population, etc. Because
measurements taken repeatedly from the same unit are
likely to be more similar to each other than measure-
ments from different units, repeated-measures analyses
explicitly account for correlation in the data taken from
a single unit. Analyses of time-series data also account
for correlated data, because measurements taken close
in time may be more similar than measurements sep-
arated by long periods of time (Box et al. 1994). Like
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TABLE 1. Sources of correlation and approaches to estimation and statistical inference discussed in the article.

Source of correlation Estimation Inference

Phylogeny generalized least squares (GLS) exact computation
Space maximum likelihood (ML) asymptotic approximation
Time estimated generalized least squares (EGLS) parametric bootstrapping
Mixed space and time restricted maximum likelihood (REML) asymptotic approximation

time, space also generates correlation, as samples taken
from nearby locations may be more similar to each
other than samples taken far apart due to some un-
measured factor that varies spatially (Cressie 1991).
Finally, linear mixed models that include both planned
‘‘fixed’’ effects and unplanned ‘‘random’’ effects (Sne-
decor and Cochran 1989: chapter 13.9, Littell et al.
1996, Neter et al. 1996, chapter 24) are seeing greater
use in ecology. The flexibility of mixed models allows
them to incorporate numerous types of correlation in
data sets.

This article gives a general presentation of the con-
sequences of correlated data and how it can be treated
statistically. It is not intended as a tutorial that gives
step-by-step instructions on how to perform statistical
tests, nor is it a flow chart to guide readers to a par-
ticular method needed for some data set in hand. In-
stead, we intend this article to be a companion to books
and manuals that address specific techniques. This ar-
ticle gives a general discussion of how correlation is
built into statistical methods, and how correlation aris-
ing in many different ways can nonetheless be analyzed
with similar methods.

The problems we address all have the general struc-
ture of regression

y 5 b 1 b x 1 «i 0 1 i i (1)

where x is the independent variable, y is the dependent
variable, and the i denotes the ith data sample. (Owing
to an unfortunate lexicon, the designation of variables
as independent or dependent is unrelated to the inde-
pendence or nonindependence of the samples). The er-
ror terms «i designate unexplained variability, and b0

and b1 are regression coefficients. For standard regres-
sion, the error terms «i are normally and independently
distributed. Here we consider the case in which error
terms are normally but not independently distributed.

The statement and analyses of a general regression
problem can be done most easily in matrix notation.
We assume that the reader has some knowledge of ma-
trix algebra; if not, Neter et al. (1989) give a good
introduction. In matrix notation, the regression problem
can be stated as

y 5 Xb 1 « (2a)

2E[««9] 5 s V (2b)

where X is the matrix whose first column contains ones
and second column contains values xi, y and « are col-

umn vectors of values yi and «i, b is the vector (b0, b1)9,
and values of « follow a multivariate normal distri-
bution with means 0 and covariance matrix s2V. The
covariance matrix is typically written in the form s2V,
where s2 determines the overall magnitude of the var-
iance and V gives the correlation structure of the data.
The element in the ith row and j th column of the co-
variance matrix, s2vij, contains the covariance between
the error terms «i and «j. In a standard regression prob-
lem, V is the identity matrix I, but this is just a special
case.

We consider four scenarios that generate correlated
data. While on the surface these scenarios might appear
quite different, they are in fact quite similar. Although
we want to emphasize their similar structure, we will
use each scenario to illustrate different statistical ap-
proaches for obtaining values of model parameters (es-
timation) and statistical confidence and tests of those
values (inference). Table 1 lists the four scenarios and
the approaches to estimation and inference we consider.
There are additional ways in which correlated data may
arise and additional approaches to estimation and in-
ference. Nonetheless, this list gives a starting point for
our introduction to statistics for correlated data. We
discuss each scenario using a simple, hypothetical ex-
ample of a type that might arise in ecological studies.
To generate data for these examples, we simulate the
same model that we then use to fit the data statistically.
Therefore, we do not address the issues of model iden-
tification/selection and model validation (Neter et al.
1989, Burnham and Anderson 1998). Computer codes
for our illustrative examples are given in the Supple-
ment, and Appendix A gives a list of useful references.

PHYLOGENETIC DEPENDENCE IN COMPARISONS

AMONG SPECIES

Example problem 1

Suppose you collected data on the body size (mass)
and home-range area for 15 ungulate species, and you
wanted to determine whether larger animals have larger
home ranges (Garland et al. 1992). This is a regression
problem in the form of Eq. 2 in which y 5 home range
area and x 5 body size (where both variables may have
been transformed). The challenge for the analysis, how-
ever, is that species do not represent independent sam-
ples from an underlying distribution of home-range
area given body size (Felsenstein 1985). This is be-
cause more closely related species tend to be more
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FIG. 1. Regression analysis for phylogenetically corre-
lated data: (A) hypothetical phylogenetic tree for 16 species;
(B) simulated values of home-range area, y, and body size,
x, for 15 of 16 species. Points shown as 3, V, and 1 cor-
respond to the clades marked by the same symbols in panel
A. The value of home-range area is unknown for the species
shown by the arrow in panel A. Values of body size were
simulated to conform to the correlation predicted from the
phylogenetic tree, and values of home-range area were sim-
ulated from the regression model given by the regression Eq.
2 with parameter values given in Table 2.

similar (Blomberg et al. 2003). In this simulated ex-
ample, the signature of phylogeny is seen in the clus-
tering of data, in which three lineages, or clades
(marked with different symbols in Fig. 1), have similar
values of both home-range area and body size. Thus,
phylogeny produces correlation among data from re-
lated species, and this correlation must be factored into
the statistical analysis (Felsenstein 1985, Garland et al.
1992).

To account for the phylogenetic correlations among
species, it is necessary to translate the phylogenetic
tree into the covariance matrix of the error terms « in
the regression model (Eq. 2). To do this, first consider
the evolution of a single trait from the base to the tips
of a phylogenetic tree. Suppose that evolution proceeds
like Brownian motion, such that changes in a trait value
along a given lineage occur as small, random steps,
with increases and decreases equally likely. Whenever
a lineage divides, the two (or more) daughter lineages
evolve independently. Under this model of Brownian
motion evolution, the trait values at the tips of the
phylogenetic tree follow a multivariate normal distri-
bution with mean equal to the mean of the base of the
tree, and covariance matrix s2V whose element s2vij

for species i and j is proportional to the branch length
of their shared lineage in the tree (Grafen 1989, Martins
and Hansen 1997). Thus, closely related species have
recent common ancestors and thus have a common evo-
lutionary history along their shared branch length on
the phylogenetic tree, leading to relatively large co-
variances s2vij between their trait values.

In the regression model (Eq. 2), the error terms rep-
resent variability between the observed home-range ar-
eas and the home-range areas best predicted by body
size. There are many factors that could cause variation
in home-range area that is not explained by body size:

diet, gut physiology, leg morphology, habitat prefer-
ence, social structure, etc. All of these traits likely have
a phylogenetic component, with, for example, closely
related species having more similar diets and gut phys-
iologies (Garland et al. 1993). The error terms « are
the sums of the effects of all of these traits on home-
range area, and due to the phylogenetic relationships
among species, the covariance matrix s2V of the error
terms should be given by the phylogenetic tree. Of
course, this assumes that evolution of the unmeasured
traits affecting home-range area is in fact Brownian
motion; this assumption can be tested statistically, al-
though this is beyond the scope of our present discus-
sion (Blomberg et al. 2003).

Statistical approach

The regression problem given by Eq. 2 for the case
in which all of the elements of V are known can be
solved exactly using generalized least squares (GLS)
(Garland and Ives 2000). Although there are other
mathematical approaches, such as a procedure known
as Independent Contrasts (Felsenstein 1985), these are
just different algorithms leading to the same endpoint
as GLS (Garland and Ives 2000). GLS estimates of b
and s2 are

21 21 21b̂ 5 (X9V X) (X9V y)

2 21ŝ 5 (y 2 Xb̂)9V (y 2 Xb̂)/(n 2 2) (3)

where X is the matrix whose first column is made up
of ones and the second column contains the values of
body size x (Judge et al. 1985: chapter 2). If there were
no correlation between error terms, this would be an
ordinary least squares (LS) regression, with V 5 I and
the estimators of b and s2 familiar from standard ref-
erence books (Neter et al. 1989). Just as in LS regres-
sion, after standardization the estimator of b has a t
distribution, and the estimator of s2 has a x2 distri-
bution, making it possible to calculate confidence in-
tervals, test hypotheses, etc. (Judge et al. 1985: chapter
2).

To illustrate the GLS analysis, we simulated a single
realization of Eq. 2 using the covariance matrix derived
from the phylogenetic tree in Fig. 1A, and ‘‘true’’ val-
ues of b0 and b1 both set to zero. Treating this simulated
data set as real data, we then computed GLS estimates
of b0 and b1 using Eq. 3 (Table 2). As should be the
case, the estimates of b0 and b1 were not statistically
significantly different from zero. In contrast, if LS es-
timation were (incorrectly) applied to the data, the es-
timate of b1 would be statistically significantly greater
than zero, implying a positive relationship between
home-range area and body size. Although a positive
relationship is suggested by a simple plot of the data
(Fig. 1B), this plot is misleading if the clusters of phy-
logenetically related species are ignored. The clusters
show that the positive relationship is largely driven by
differences among three clades. Because the species in
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TABLE 2. Parameter estimates for example 1.

Parameter
True
value

GLS

Estimate
H0: b 5 0

P , z t z
Predicted

value 95% CL

LS

Estimate
H0: b 5 0

P , z t z
Predicted

value 95% CL

b0 0 20.0436 0.5 0.5223 0.05
b1 0 0.2298 0.15 0.6696 0.01
E{Yh} 1.4413 (0.34, 2.54) 0.7045 (20.80, 2.20)

Notes: Parameters were estimated for the generalized least squares (GLS) model and also by least squares (LS) assuming
(incorrectly) that the error terms are independent. E{Yh} is the expected value of Y for the species marked by the arrow in
Fig. 1A.

each clade are all likely to be similar in numerous ways,
the similarity of their home-range areas does not nec-
essarily implicate body size as the main determinant
of home-range areas for the 15 simulated species.

Comments

Researchers are sometimes reluctant to employ
methods that account for phylogenies in comparative
studies because this seems to cause a ‘‘loss of power’’
in the tests they perform. In the example (Table 2),
ignoring phylogeny (i.e., using LS regression) would
lead to the conclusion that home-range area is posi-
tively related to body size, whereas the GLS analysis
would not. Since in reality there is no relationship (b1

5 0), this is not a ‘‘loss of power’’ caused by account-
ing for phylogeny, but instead it is GLS correctly fitting
the data. In general, a statistical analysis that accounts
for phylogenetic relatedness should be performed in
comparative studies; assuming trait differences among
species show a phylogenetic signal is a reasonable null
hypothesis. If there are doubts about whether this is
appropriate, diagnostics can be used to address whether
there is in fact a phylogenetic signal to the data (Blom-
berg et al. 2003).

Although it may sometimes be the case that strong
phylogenetic correlations make it difficult (i.e., require
more data) to identify relationships between variables,
phylogenetic correlations themselves provide infor-
mation. For example, consider the problem of pre-
dicting the home-range area of a species whose body
size and location on the phylogenetic tree are known;
specifically, suppose that a sixteenth species identified
by the arrow in Fig. 1A has body size 0.348. From this
information, it is possible to calculate the predicted
home-range area of this species with 95% confidence
intervals using standard methods (Judge et al. 1985:
chapter 2). In this example, the confidence interval has
roughly the same width as that obtained (incorrectly)
using LS regression (Table 2). Even though the body
size of the new species is providing no information
about its predicted home-range area (since b1 5 0), the
home-range areas of its phylogenetic relatives are pro-
viding information. Because phylogenetic correlations
are structured into the GLS regression model, predic-
tions are made using this information (see Garland and
Ives 2000).

SPATIAL DATA

Example problem 2

Suppose you collected data every 10 m at 50 points
along a transect through secondary forest. The data
consist of soil nitrogen and aboveground net primary
production (NPP) (Shaver et al. 1990). Fig. 2 shows a
simulated example of a data set that might be collected
in such a study, with soil nitrogen and NPP standard-
ized so that both have mean zero and variance one.
The simulation was designed so that soil nitrogen varies
along the transect in an autocorrelated way, with nearby
samples tending to have similar values (Fig. 2A, light
line). Variation in NPP (Fig. 2A, heavy line) is posi-
tively associated with variation in soil nitrogen (Fig.
2C). In addition, there is a spatial component to vari-
ation in NPP that is not explained by soil nitrogen;
plotting the difference between NPP and soil nitrogen
shows spatial autocorrelation after an effect of soil ni-
trogen is removed (Fig. 2B). The problem is to quantify
the importance of soil nitrogen on NPP and any spatial
component to variation in NPP beyond that explained
by soil nitrogen.

The simulated data set was generated using the gen-
eral regression model given by Eq. 2, with y 5 NPP
and x 5 soil nitrogen. Many forms of covariance ma-
trices have been used to describe spatial correlation;
here, we use the form (Cressie 1991):

n211 r r 
 n212 2 2r 1 rs V 5 (1 2 g)s 1 gs I. (4) · · · 

n21 n22r r 1 

This formulation splits variation in the errors into two
terms. The first gives the spatial component of s2V,
with r measuring spatial autocorrelation. As the term
is constructed, spatial correlation drops off exponen-
tially with distance between sample locations, so that
a distance of i intervals between locations leads to a
correlation of ri. The second term in Eq. 4 gives the
nonspatial component of s2V; the local variance of the
error terms, gs2, is often called the ‘‘nugget effect’’
(Isaaks and Srivastava 1989). The parameter g scales
the magnitude of the nugget relative to the spatial com-
ponent of s2V; the larger the value of g, the greater



24 INVITED FEATURE Ecological Applications
Vol. 16, No. 1

FIG. 2. (A) Soil nitrogen concentration (light line) and
aboveground net primary production (heavy line) at 50 points
along a transect simulated by the regression model with pa-
rameters given in Table 3. Values of soil N and NPP are
standardized to have mean 0 and variance 1. (B) Difference
between NPP and N at each point along the transect. (C) NPP
vs. soil N.

TABLE 3. Maximum-likelihood (ML) parameter estimates
for example 2 with spatial correlation.

Parameter True value Estimate 95% CL

b0 0 0.228 (20.115, 0.571)
b1 1 0.910 (0.690, 1.13)
r 0.8 0.695 (0.295, 1.09)
g 0.5 0.443 (0, 0.924)
s 0.75 0.656 (0.476, 0.837)

the local variability in error terms « relative to the
spatial component.

Statistical approach

For the data set generated by simulating Eq. 2 using
the covariance matrix of Eq. 4, the goal of the statistical
analyses is to fit the same model and estimate the re-
gression coefficients b0 and b1, and the parameters in
the covariance matrix, s2, r, and g. In contrast to the
example with a phylogeny (Eq. 3), the matrix V con-
tains two parameters (r and g) that must be estimated.
This makes it impossible to use GLS, for which V must
be known. Here, we illustrate maximum-likelihood
(ML) estimation.

The ML estimates for the model parameters are those
values for which the data would be the most likely

observation from the model (Judge et al. 1985: chapter
2, Cressie 1991). The realized values of the error terms
(i.e., the residuals) are given by (y 2 Xb) and follow
a multivariate normal distribution with mean 0 and co-
variance matrix s2V. By a well-known statistical result,
the log likelihood for the observed data given any set
of values of b0, b1, r, g, and s2 is

2n log 2ps logzVz
2l(b , b , r, g, s ) 5 2 20 1 2 2

1
212 (y 2 Xb)9V (y 2 Xb) (5)

22s

where n is the number of samples, and zVz is the de-
terminant of V (Judge et al. 1985: chapter 2). The func-
tion l(b0, b1, r, g, s2) is the log likelihood function,
and the ML parameter estimates are those that maxi-
mize l(b0, b1, r, g, s2).

For the simulated data in Fig. 2, the ML parameter
estimates are given in Table 3. It is possible to ap-
proximate standard deviations and confidence intervals
for the ML estimates. Information about the variances
of the estimators can be derived from the log-likelihood
function, and when the estimators are scaled by these
variance terms, they follow asymptotically normal dis-
tributions (Judge et al. 1985: chapter 5). The resulting
approximate standard deviations and confidence inter-
vals approach the true standard deviations and confi-
dence intervals only in the limit as the sample size
approaches infinity, but they provide reasonable ap-
proximations for sample sizes short of infinity. Unfor-
tunately, it is generally difficult to say how good the
approximations are for a given data set without exten-
sive simulations.

For this example, the estimated values of the param-
eters are fairly close to their true values, the values
used to produce the simulated data. All parameters of
interest other than g were identified as being statisti-
cally different from zero with 95% confidence (a 5
0.05). Importantly, both a direct effect of soil nitrogen
(b1) and a residual spatial effect of some unidentified
variable(s) (r) were identified by the fitted model.

Comments

In the model we used for illustration, we selected a
very simple description of the spatial correlation in
errors « that contained only two parameters, r and g.
An example of a more complicated model would be
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FIG. 3. Abundances of butterflies (heavy line) and their
host plant (light line) for 50 butterfly generations (years) sim-
ulated from the regression model with parameters given in
Table 4. (B) Bootstrap approximate distribution of the esti-
mator of r for the simulated data set given in panel A. The
parametric bootstrap was performed by simulating the re-
gression model 2000 times for the parameter values estimated
from the original data set. The light arrow gives the original
estimate of r 5 0.856 used to create the bootstrap simulated
data sets, and the heavy arrow gives the mean of the ap-
proximate distribution of the estimator, r 5 0.770.

one in which the change in correlation with distance
between sample sites is unspecified, so that the cor-
relation between samples i sites apart on the transect
is the parameter ri. This leads to a model with many
more parameters contained in V. In comparing these
or other models, criteria based on the log-likelihood
function, such as Akaike’s Information Criterion (AIC)
(Akaike 1973), can be employed (Hoeting et al. 2006).
These methods provide a statistical comparison among
models in their ability to describe a data set when mod-
els differ in the number of parameters they contain.

Although our example confines space to one dimen-
sion along a linear transect, the same approach can be
used for two- or three-dimensional space. There is con-
siderably more mathematical bookkeeping required,
however, and more computing power demanded.

TIME-SERIES DATA

Example problem 3

Suppose you have data on the population abundance
of a butterfly species for 50 years (with one generation
per year), and for each year you also have the abun-
dance of its sole host plant (Fig. 3A). Host-plant abun-
dance has decreased over the 50 years, and you want
to answer two questions. Is the decrease in butterfly
abundance caused by the decrease in plant abundance?
And, how strong is the density dependence that affects
butterfly dynamics? Although these questions do not
obviously involve correlated data, the time-series na-
ture of the data induces correlation. As shown below,
the first question involves estimating regression coef-
ficients, and the second question involves estimating
the correlation structure of the data.

We simulated the butterfly and host-plant data shown
in Fig. 3 using the following model:

x(t) 2 x̄(t) 5 r[x(t 2 1) 2 x̄(t 2 1)] 1 a(t)

x̄(t) 5 b 1 b u(t). (6)0 1

Here, x(t) and u(t) are the log abundances of butterflies
and host plants, and a(t) are normal random variables
with mean zero and variances s2 that are serially in-
dependent (i.e., a(t) and a(s) are independent for all t
± s). The model describes changes in the difference
between x(t) and x̄(t); x̄(t) would be the mean (equilib-
rium) density of butterflies if the abundance of host
plants did not change. The strength of density depen-
dence is determined by r. Interpreting r is easiest for
the situation in which x̄(t) does not change through
time. If r is close to zero, x(t) will remain close to x̄(t),
giving the case of strong density dependence. In con-
trast, if r is close to one, a large (or small) value of
x(t 2 1) 2 x̄(t 2 1) will likely be followed by a large
(small) value of x(t) 2 x̄(t), so the butterfly population
will tend to remain far from x̄(t). If r equals one, the
population exhibits a random walk, with log butterfly
abundance eventually reaching positive or negative in-

finity. Rather than assuming x̄(t) does not change, how-
ever, the model assumes that x̄(t) is a function of log
host-plant abundance, u(t). If, for example, b1 were
positive, then the long-term mean butterfly abundance,
x̄(t), would be larger if the abundance of host plants
was high.

Eq. 6 is an autoregressive model of order one, AR(1),
with a time-varying component u(t) (Harvey 1989:
chapter 2, Box et al. 1994). The order of the model
refers to the time lag; the model is order one, because
the value of x(t) depends only on the value of x(t 2 1)
and not on the value of x at more distant time lags.
The equation differs from the standard formulation of
regression, because values from the data on butterfly
abundance, x, occur on both the left- and right-hand
sides of the equation. Also, in contrast to the examples
with phylogenetic and spatial correlations, the error
terms a(t) are not correlated. Nonetheless, because val-
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TABLE 4. EGLS estimates for example 3 with temporal autocorrelation.

Parameter True value

EGLS

Estimate 95% CL

ML

Estimate 95% CL

b0 0 0.303 (20.103, 0.705) 0.303 (20.146, 0.752)
b1 1 0.908 (0.620, 1.19) 0.908 (0.625, 1.18)
r 0.9 0.856 (0.456, 0.916) 0.855 (0.816, 0.913)
s 0.2 0.201 (0.159, 0.238) 0.195 (0.140, 0.250)

ues of x(t) depend on values of x(t 2 1), x(t) and x(t
2 1) are not independent.

In Appendix B we show that the model given by Eq.
6 can be reformulated as

x 5 Ub 1 «

n211 r r 
 n222 2 r 1 rs V 5 s (7) · · · 

n21 n22r r 1 

where U is the matrix whose first column contains ones
and second column contains values of u(t), and « is
the vector of normally distributed error terms with
mean zero and covariance matrix s2V. This formulation
has values of log butterfly abundance, x, only on the
left-hand side of the equation. Furthermore, the
strength of density dependence, r, now governs the
temporal autocorrelation between error terms; weak
density dependence (r close to one) leads to strongly
correlated errors, because the population abundance in
one generation is largely determined by the abundance
in the previous generation. The effect of host-plant
abundance is a linear dependence of values of x(t) on
u(t). The model given by Eq. 7 is identical to the spatial
model when there is no nugget (g 5 0).

Statistical approach

Because the time-series model has the same structure
as the spatial model, it could be fit in the same way
using ML estimation. To give an example of a different
approach, however, we will use estimated generalized
least squares (EGLS). Because the matrix V contains
a parameter, r, that must be estimated, GLS cannot be
used. EGLS is an extension of GLS in which compo-
nents of V are estimated (Judge et al. 1985: chapter 5).
EGLS is not commonly used in analyzing time-series
data, but it nonetheless is useful to highlight some sta-
tistical points.

EGLS can be implemented as an iterative procedure.
First, assume that r 5 0 and calculate the GLS esti-
mates of b0 and b1 using the formula given in Eq. 3.
For these estimates, compute the residuals r 5 x 2
Ub. Since the residuals r are realizations of the errors
«, the correlation between residuals gives an estimate
of the correlation between error terms, r. Thus, using
the correlation between residuals as an estimate of r,
estimates of b0 and b1 can again be calculated using
the GLS formula. The residuals calculated using the

new estimates of b0 and b1 give a new estimate of r,
and the procedure can be repeated until estimates of
b0, b1, and r converge, thus giving the EGLS estimates
of b0, b1, and r, and also of s2 from Eq. 3.

EGLS estimators for b0 and b1 are unbiased, meaning
that their expected values are equal to the true param-
eter values. However, the estimator of r is only as-
ymptotically unbiased, so it may be biased unless sam-
ple sizes are very large (Judge et al. 1985: chapter 5).
The standard deviation of the estimators, and hence
their confidence intervals, cannot be obtained using the
standard GLS formula (Eq. 3), because the standard
formula assumes that the covariance matrix s2V is
known without any uncertainty. This is not the case in
the present problem due to the uncertainty in the es-
timate of r.

To obtain confidence intervals for the parameter es-
timates, we used parametric bootstrapping (Efron and
Tibshirani 1993). Parametric bootstrapping is a simu-
lation approach in which the statistical model fitted to
the data is used to simulate a large number, say m,
bootstrap data sets. For this example, we simulated Eq.
6 using the estimated values of all parameters, b0, b1,
r, and s2, to obtain m 5 2000 bootstrap data sets. For
each of these m data sets, we estimated values of pa-
rameters, treating the bootstrap data sets as if they were
real. The resulting m values of the parameters approx-
imate the distribution of their estimators, since by def-
inition the distribution of an estimator is the distribu-
tion of estimates that occur under the assumption that
the parameter estimates and model are correct.

The EGLS estimates and their 95% confidence in-
tervals for the data set given in Fig. 3 are displayed in
Table 4. For comparison, we also computed the ML
estimates and 95% confidence intervals calculated from
the likelihood function. The EGLS and ML estimates
are in close agreement, and are fairly close to the true
parameter values used to simulate the data. Thus, in
the data set the decline in host-plant abundance causes
a decline in butterfly abundance (b̂1 . 0), and density
dependence is weak ( 5 0.85), causing strong auto-r̂
correlation in butterfly abundance. The only cause for
concern is the estimates of r, which seem low, with
the true value of 0.9 towards the upper limit of the 95%
confidence intervals calculated both from EGLS boot-
strapping and ML approximations. Furthermore, the
lower bound of the EGLS bootstrapped confidence in-
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terval is considerably lower than obtained from the ML
procedure.

Differences between true and estimated values sug-
gest that parameter estimates are biased. More infor-
mation can be obtained by looking at the bootstrap
approximate distribution of the estimator of r (Fig. 3B).
For the simulations used to construct the approximate
distribution, the value of 5 0.856, yet the mean ofr̂
the approximate distribution is 0.770. This confirms
that the EGLS estimator is biased, with the mean of
the estimator less than the true mean of the process
from which the data are derived. This is not a failing
of the EGLS estimator alone; the ML estimator is
equally biased. The explanation for the bias is sug-
gested by the skewed distribution of the estimator. Es-
timates of r never exceed one, since values of r . 1
imply qualitatively different dynamics than those ob-
served in the data; if r . 1, the butterfly population
would diverge from x̄(t) exponentially. The upper limit
on the value of r leads to skew in the estimator and
also the bias. Although biased estimators are clearly
not ideal, they are not uncommon. Indeed, the ML es-
timator of the variance of a set of data is 1/n (xi

nSi51

2 x̄)2, whereas the unbiased estimator is the more fa-
miliar 1/(n 2 1) (xi 2 x̄)2. An advantage of boot-nSi51

strapping (or simulation approaches in general) is that
it reveals bias which otherwise would not be apparent.

Comments

We formulated our time-series model to reveal ex-
plicitly the correlation structure that time series intro-
duces into data. Specifically, we formulated the model
as a regression with covariance among errors given by
the matrix s2V. Most approaches, however, leave the
sequence of observations in place, retaining x(t) on the
left-hand side and x(t 2 1) on the right-hand side of
the equation, which is more intuitively clear (Box et
al. 1994).

An important issue in time-series models is how to
treat the first observation, x(1). In the model, all values
of x(t) for t . 1 are predicted using the previous value
x(t 2 1), but this is clearly impossible for x(1). In our
analyses, we assumed very little about the value of x(0)
occurring before the first observed value. Specifically,
we assumed that x(0) is selected at random from the
distribution of x that occurs when u(t) is zero (Appen-
dix B). For our model, this makes x(0) a normal random
variable with mean zero and variance s2/(1 1 r2). This
assumption gives the particularly simple form of V in
Eq. 7. Nonetheless, this approach does not use all of
the information available about x(0), in particular the
value of x(1) and subsequent values of x(t). Using ob-
served values of x(t) to back calculate the estimate of
x(0) will generally lead to better parameter estimates
(Box et al. 1994) and is likely to reduce bias in pa-
rameter estimates. Another approach is simply to use
x(1) as the first data point and ignore any information

that the value of x(1) might provide about the model
and parameter values. This approach is called condi-
tional least squares (CLS), because the parameters of
the resulting model can be estimated using least squares
regression conditional on the first value x(1). Box et
al. (1994) give a thorough discussion of different ways
of treating the first point in the time series.

Both EGLS and ML estimators of r were biased, and
bias is a common problem in analyses of correlated
data. The best way to identify bias is through boot-
strapping, either parametric bootstrapping like we used
or regular bootstrapping. (In regular bootstrapping,
rather than obtain values of error terms from a random
number generator, the errors are selected at random,
with replacement, from the residuals of the model fitted
to the data; see Efron and Tibshirani 1993.) The pos-
sibility of bias is typically not stressed in statistical
software packages, making some form of bootstrapping
or simulation advisable. In general, simulations can be
very informative about statistical analyses, often giving
information about the data and analyses that is sur-
prising.

Given that the estimators are biased, two general
approaches can be used. First, bootstrapping reveals
the magnitude of the bias and thereby provides a way
to compensate (Efron and Tibshirani 1993). Second,
the estimation procedure can be reformulated to pro-
duce estimators with less bias. This is the strategy with
restricted maximum likelihood (REML), which we il-
lustrate in the next section.

LINEAR MIXED MODELS

Example problem 4

Suppose you performed an experiment designed to
investigate the factors responsible for the abundance
of a predatory insect species in large agricultural fields
containing its insect prey (Östman and Ives 2003). Four
fields are each divided into two sections, with each
section subjected to one of two treatments. One treat-
ment is to spray an insecticide early in the growing
season to reduce the initial density of prey. The second
treatment is an unsprayed control. Densities of prey
and predators in each of the eight field sections are
sampled every week for 10 weeks, at which time the
fields are harvested. During this period, prey densities
increase in all sections, and although there is initially
a strong treatment effect, this effect is reduced through
time (Fig. 4A). Predator densities also increase with
time, and predator densities in sections that were treat-
ed with insecticides tend to be lower than controls (Fig.
4B).

Several questions can be addressed with these data.
First, is there a direct effect of prey density on predator
abundance? The predators are highly mobile, easily
capable of flying between fields, and they may aggre-
gate in response to high prey abundances at local scales.
Therefore, you suspect a large effect of prey density,
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FIG. 4. Simulated experiment to investigate the factors
affecting the abundance of a predator species in fields con-
taining prey. Simulations were performed using Eq. 8 with
the parameters given in Table 5. (A) Prey density in each of
four fields subjected to insecticide treatment early in the sea-
son (dashed lines) or not (solid lines). (B) Corresponding
densities of the predator.

which is why you designed the experiment to manip-
ulate prey density. Second, predators are reproducing
throughout the summer, so is there an overall increase
in predator density through time? Third, although the
insecticide treatments were designed to manipulate
only prey density at the beginning of the study, is there
any evidence of a residual effect of insecticides directly
on the predators? Finally, for practical reasons, you
could not strictly standardize the fields, so they differ
in size, type of surrounding crops, etc. Thus, are there
differences in predator densities among fields that are
not explained by prey density, time, or treatment?

For this example, we simulated data harboring these
questions using the following regression model:

y 5 b 1 b x 1 b t 1 b z 1 u 1 «0 1 2 3

2 2E[uu9] 5 s G E[««9] 5 s R (8)u «

where y is the log density of predators, x is the log
density of prey, t is time (week of the experiment), z
is treatment (0 5 control, 1 5 insecticides), u indicates
the field, and « are error terms. Under the assumption
that predator densities increase exponentially over the
growing season, time t is treated as a continuous var-
iable, t 5 1, 2, . . . , 10, rather than as a categorical
variable that does not take order into account. Because
predators that are in a field at one sample may remain
in the field until the next sample, the density of pred-
ators is expected to be autocorrelated. Therefore, the
covariance matrix for «, R, is constructed so that2s«

covariances between errors from different sections of
fields are zero, and within any given section of a field,
the correlation between «(t) and «(t 1 s) is rs. This
assumption leads to a covariance matrix for errors with-
in sections of fields having an AR(1) structure as de-
veloped in the model for time series (Eq. 7). Finally,
possible differences among fields are given by the var-
iable u, which is assumed to be normally distributed
with mean zero and variance . Only four values of2su

u are selected from the normal distribution, one for
each field, with larger values of implying greater2su

among-field differences.
The regression Eq. 8 is a linear mixed model (LMM),

because it contains independent variables that are re-
garded as fixed (prey density x, time t, and treatment
z) and independent variables that are themselves drawn
from a random distribution, in this case the effect of
field, u (Snedecor and Cochran 1989: chapter 13.9, Net-
er et al. 1996: chapter 24). Because u is treated as a
random variable, it has a covariance matrix, which for
this model is

G Q Q Q 
 Q G Q Q

2 2s G 5 s . (9) u u
Q Q G Q 
Q Q Q G 

This form of G assumes that data are sorted first by
field and then by section within fields, so that the first
20 data points correspond to the 10 points taken in each
of the two sections within the same field. Matrix G is
block diagonal, with matrix G repeated down the di-
agonal being a 20 3 20 matrix of ones, and matrix Q
in the off-diagonal positions being a 20 3 20 matrix
of zeros. This structure of G means that the values of
u for samples from the same field are perfectly cor-
related (i.e., the same), but there is no correlation in
values of u among fields. The correlation matrix R for
error terms « is also block diagonal, with eight 10 3
10 matrices along the diagonal having the AR(1) struc-
ture give in Eq. 7 and zeros in the remaining elements.
Thus, within a section there is a first-order correlation
of r. The overall covariance matrix for the model is

2 2 2s V 5 s G 1 s R.u « (10)

To simulate the data, we first simulated values of log
prey densities, x, assuming the dynamics were gov-
erned by an AR(1) process, starting at low densities to
ensure a general increase in prey densities in all fields.
A treatment effect on prey densities was imposed by
lowering by a random amount the initial densities of
prey in the sections of fields receiving insecticide treat-
ment. Log predator densities, y, were then simulated
using the model given by Eq. (8).

Statistical approach

To fit the model to the simulated data, we used re-
stricted maximum likelihood (REML). REML is sim-
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TABLE 5. REML estimates of example 4.

Parameter True value

Including field, u

Estimate
H0: b 5 0

P . z t z

Excluding field, u

Estimate
H0: b 5 0

P . z t z

b0 0 20.233 0.8 20.622 0.6
b1 (prey) 0.5 0.494 0.0001 0.461 0.0001
b2 (time) 0.2 0.244 0.0001 0.271 0.0017
b3 (treatment) 0 0.325 0.1 0.207 0.83
s (field)2

u 1 1.86
r 0.8 0.574 0.957
s2

« 0.16 0.202 2.06
AIC 98.22 111.74

ilar to ML estimation, being based on the log likelihood
function, but the calculations are formulated to estimate
subsets of parameters separately. For the mixed model,
the variance components r, and are estimated2 2s , su «

separately from the other parameters. To fit the model,
we used PROC MIXED in SAS (Littell et al. 1996),
although similar procedures exist in the S/S1 and R
programming languages (Pinheiro and Bates 2000, Dal-
gaard 2002). REML tends to be less biased than ML,
although the statistical distributions of the estimators
are only known asymptotically, so statistical tests and
confidence intervals are only approximate.

Fitting the model used to simulate the data shows
that the analysis provides reasonable parameter esti-
mates and correctly identifies the structure of the data
(Table 5). The analysis identifies the effect of prey
density and time (week of sample) on predator density,
and shows no statistically significant direct effect of
the insecticide treatment on predators. The autocorre-
lation r between predator densities in successive sam-
ples in the same section of a field is underestimated;
the true value is 0.8 and the estimate is 0.574. As found
in the time-series example, simulation studies showed
that the value of r is consistently underestimated in the
REML analysis. Specifically, parametric bootstrapping
based on 1000 simulations gave a mean and 95% con-
fidence interval 0.702 (0.449, 0.868) for the estimate
of r when the true value was 0.8. This downward bias
results from the upper bound of r 5 1 required for
nonexplosive predator dynamics. The estimate of the
among-field variance, , was also biased, in this case2su

upwards, with parametric bootstrapping giving esti-
mated mean and confidence interval 0.0818 (0.0371,
0.1621) when the true value was 0.04. This upwards
bias is caused by the lower bound of 5 0.2su

The SAS analysis does not give confidence intervals
for the variance components of the model. To determine
whether the overall structure of the model containing
these components is warranted, we can use a model-
comparison approach. Specifically, to determine
whether there is reason to include among-field vari-
ability, we fit an alternative model that does not include
the variable u (Table 5). The alternative model had a
higher AIC value than the original, indicating a poorer

fit to the data (Burnham and Anderson 1998). Inter-
estingly, the estimate of r in the alternative model was
much higher than in the original. This occurs because
in the data there are large differences between fields,
and since the alternative model is not allowed to ac-
count for this directly, it forces among-field variance
into the AR(1) covariance matrix. In the alternative
model, consistent differences among fields require high
autocorrelation among observations within fields.

Comments

Linear mixed models give a very flexible framework
for analyzing data with different types of correlations
(Littell et al. 1996). Our example was a repeated-mea-
sures model, since samples were taken repeatedly from
the same section within fields, and the time-series na-
ture of the underlying biological system led us to use
an AR(1) correlation structure for repeated observa-
tions within the same section. But many other types of
correlation structures can be fit into the LMM format.

DISCUSSION

Correlation among samples is often unavoidable in
observational data, where observations are taken, for
example, from phylogenetically related species, from
spatially nearby locations, or on populations through
time. Even in experiments, correlation may arise, for
example, from repeated measures of the same sampling
unit (example 4). In experiments like the one illustrated
by example 4, the researcher may want to know how
a population changes through time, and this informa-
tion cannot be obtained from a simple randomized ex-
perimental design that guarantees independent data.
Given that correlated data are often unavoidable and
sometimes advisable, ecologists should be familiar
with the range of statistical approaches that have been
developed for correlated data.

The four examples we have discussed in this article
arose from very different contexts, yet they can be
analyzed in very much the same way. The key to an-
alyzing correlated data is to specify a statistical model
that explicitly describes the correlation structure of the
data. This correlation structure might be derived from
phylogenies, spatial location, or dynamic processes that
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dictate changes in variables through time. The corre-
lation structure of the data is not uniquely determined
by the process leading to correlation. For instance, we
used the same AR(1) correlation structure to model
both spatial and temporal correlation in examples 2 and
3, respectively. Furthermore, multiple sources of cor-
relation may operate simultaneously. For instance, ex-
ample 4 contains both spatial correlation (sections
within the same field are more likely to be similar) and
temporal correlation (data collected from the same sec-
tion through time are more likely to be correlated).

Once a model specifying the correlation structure is
constructed, there is usually a statistical approach for
analyzing it. We illustrated a few of these approaches
that can be used easily for normally distributed data:
GLS, EGLS, ML, and REML. These approaches can
be implemented either by writing code directly, using
a matrix-friendly language such as Matlab (MathWorks
1996), or by using a statistical package such as SAS
(Littell et al. 1996), S/S1 (Pinheiro and Bates 2000),
or R (Dalgaard 2002, R Foundation 2004) that contains
the facilities to analyze correlated data.

Ecologists are generally familiar with the problems
that arise when a model does not properly fit the data,
as might be revealed by a range of diagnostics, such
as tests for linearity and homogeneity of variances in
regression models (Neter et al. 1989). For most ap-
proaches used for correlated data, even when the model
does fit the data, there is nonetheless the potential for
‘‘incorrect’’ results. We illustrated this in examples 3
and 4, in which the estimators of some parameters were
biased even though the statistical model fit to the data
was identical to the model used to simulate the data in
the first place. Note, however, that bias in our examples
was largely confined to parameters dictating the vari-
ance-covariance component of the model, r and s2,
while estimates of the regression parameters b0 and b1

were not biased. Bias is an issue that should always be
remembered when fitting all but the simplest types of
statistical models, and the easiest way of checking for
bias is to perform simulations.

Statistics, though sometimes seeming to complicate
ecologists’ lives, actually have the power to simplify
ecological research by opening up more types of data
and experimental designs to sound evaluation. The sta-
tistical approaches we described in this article are not
difficult, and their flexibility makes them frequently
valuable for ecological research.
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APPENDIX B

This appendix reformulates the time-series model given
by Eq. 6 as a generalized regression model given by
Eq. 7.

The time-series model can be written in matrix form as

x 2 x̄ 5 r(x 2 x̄ ) 1 aB B (B1)

where x and x̄ are the vectors of values of x(t) and x̄(t),
and xB and x̄B contain zeros as their first elements and
values of x(t) and x̄(t) for t 5 1 to n 2 1 as their remaining
elements. Vector a contains x(0) as its first element and
values of a(t) as its remaining elements. This formulation,
with the first element of xB being zero and the first element
of a being x(0), is necessitated because, although there are
n observed values of x, there are only n 2 1 predicted
values of x (and n 2 1 values of a), since the first predicted

value of x is x(2). In order to have x contain all of the
observed data, we include an unobserved value x(0), but
since it is unobserved, we treat it as a random variable and
hence place it in a.

Eq. B1 can be simplified using the backwards operator

0 0 0 0 
1 0 0 0 

B 5 (B2) 0 1 0 0
· · · 

0 0 0 0 

which maps values of x onto values of xB: xB 5 Bx. From
Eq. B1,
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x 2 x̄ 5 rB(x 2 x̄) 1 a

(I 2 rB)(x 2 x̄) 5 a
21x 5 x̄ 1 (I 2 rB) a

x 5 x̄ 1 «. (B3)

Because « is a linear transformation of a, « is normally dis-
tributed with mean zero and covariance matrix

21 21E(««9) 5 E{(I 2 rB) aa9[(I 2 rB) ]9}

21 21 25 (I 2 rB) V[(I 2 rB) ]9 5 s V (B4)

where V is the covariance matrix of a. Since the values of
a are assumed to be independent, V is a diagonal matrix with
diagonal elements s2 except for the first diagonal element.
The first diagonal element corresponds to x(0), the unob-
served value of x before the first observed value. If we assume
that nothing is known about x(0) other than that it is pulled
from the stationary distribution of x(t) that would occur in
the absence of changes in host-plant abundance, u(t), then
the variance in x(0) is s2/(1 1 r2) (Ives et al. 2003). With
this formulation of V, V is given by Eq. 7.

SUPPLEMENT

Annotated computer code in Matlab and SAS for performing the simulations and analyses in examples 1–4 (Ecological
Archives A016-002-S1).


