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Abstract. There is growing appreciation that ecological communities are phylogenetically
structured, with phylogenetically closely related species either more or less likely to co-occur at
the same site. Here, we present phylogenetic generalized linear mixed models (PGLMMs) that
can statistically test a wide variety of phylogenetic patterns in community structure. In
contrast to most current statistical approaches that rely on community metrics and
randomization tests, PGLMMs are model-based statistics that fit observed presence/absence
data to underlying hypotheses about the distributions of species among communities. We built
four PGLMMs to address (1) phylogenetic patterns in community composition, (2)
phylogenetic variation in species sensitivities to environmental gradients among communities,
(3) phylogenetic repulsion in which closely related species are less likely to co-occur, and (4)
trait-based variation in species sensitivities to environmental gradients. We also built a fifth
PGLMM to test a key underlying assumption of phylogenetic community structure: that
phylogenetic information serves as a surrogate for trait information about species; this model
tests whether the introduction of trait information can explain all variation in species
occurrences among communities, leaving no phylogenetic residual variation. We assessed the
performance of these PGLMMs using community simulation models and show that
PGLMMs have equal or greater statistical power than alternative approaches currently in
the literature. Finally, we illustrate the PGLMM advantage of fitting a model to data by
showing how variation in species occurrences among communities can be partitioned into
phylogenetic and site-specific components, and how fitted models can be used to predict the
co-occurrence of phylogenetically related species.

Key words: ecophylogenetics; environmental gradient; generalized linear models, GLMM; null model;
phylogenetic community structure; phylogenetic diversity; phylogenetic signal; trait-based community
assembly; trait variation.

INTRODUCTION

The occurrence of species in ecological communities

depends on both how species interact with the environ-

ment and how they interact with other species. These

interactions in turn depend on species-specific traits. For

example, the occurrence of a fish species in a lake

community might depend on environmental character-

istics of the lake (pH, freezing in winter, and so on) and

whether the species is tolerant to these characteristics. A

species’ occurrence might also depend on the presence/

absence of other species that either attract the focal

species (e.g., prey, mutualists) or repel it (e.g., compet-

itors, predators). For example, a fish species might be

excluded from a lake by the presence of a congeneric

competitor. Because the occurrence of species depends

on traits that dictate their interactions with the

environment and other species, and because traits are

phylogenetically inherited, we expect to find phyloge-

netic patterns in the composition of communities, with

phylogenetically related species either more or less likely

to co-occur at the same sites (Losos 1996, Webb et al.

2002, 2006). We will refer to these general patterns as

phylogenetic community structure (Webb et al. 2002).

There is a growing body of literature documenting

phylogenetic structure in a wide variety of ecological

communities (e.g., Graves and Gotelli 1993, Tofts and

Silvertown 2000, Webb et al. 2002, Cavender-Bares et al.

2004, Peres-Neto 2004, Cavender-Bares et al. 2006,

Horner-Devine and Bohannan 2006, Weiblen et al.

2006, Helmus et al. 2007a, Pillar and Duarte 2010). The

typical approach of these studies is to characterize the

observed data with some metric of phylogenetic

community structure and then perform one or more

randomization tests to determine whether the observed

value of the metric differs statistically from a null

expectation. For example, Webb (2000) examined the

tree community composition of 28 sites on Borneo,

asking whether co-occurrences of 324 species were

random or whether there were phylogenetic patterns.

For one of two phylogenetic biodiversity metrics he
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considered (the nearest taxa index, NTI), the value for

the observed communities differed from the distribution

of values generated by permuting species among sites.

NTI involves calculating for each species the distance

(number of nodes on the phylogenetic tree) to its nearest

neighbor, and then computing the average of these

minimal distances among species in a community (see

also Webb et al. 2002). Among the 28 sites, species co-

occurred on average with more closely related species

than predicted by chance, where chance is defined by the

permutation test. In addition to metrics such as NTI, a

similar procedure using randomization tests can be used

to compare phylogenetic distance/covariance matrices

and species occurrence matrices (e.g., Cavender-Bares et

al. 2004, Leibold et al. 2010, Pillar and Duarte 2010).

In contrast to existing approaches that rely on metrics

and randomization tests, here we developed statistical

models for community structure that can incorporate

phylogenetic, environmental, trait, and other informa-

tion. To clarify the distinction between metrics and

models, consider the following simile. Fitting metrics is

conceptually similar to performing a randomization test

to see if the values of two variables Y and X are

associated; this will test for the existence of an

association but little more. Fitting a statistical model

of community structure is similar to performing

regression; fitting the regression model of Y on X gives

estimates of coefficients with their confidence intervals,

predictions for new values of Y, maximum likelihood

values that can be used for model comparisons,

diagnostic tests for model goodness of fit, and other

statistical information. The approach we developed is

essentially a regression for the presence/absence of

species among communities that takes the form of a

generalized linear mixed model (GLMM; Milner et al.

1999, Krackow and Tkadlec 2001, Kizilkaya and

Tempelman 2005, Faes et al. 2006, Gelman and Hill

2007, McCulloch et al. 2008, Bolker et al. 2009).

Phylogenetic GLMMs (PGLMMs) overcome three

limitations of the typical metric/randomization ap-

proach. First, with the typical approach a single metric

summarizes community structure with a single number,

and this makes it difficult to explore all but the simplest

hypotheses. For the hypothesis (whether phylogeneti-

cally related species are more likely to co-occur) tested

by Webb (2000), a single metric was adequate (provided

it was the right metric: NTI). However, there is growing

interest in not just identifying phylogenetic patterns, but

also in investigating mechanisms involving environmen-

tal factors and species traits (Legendre et al. 1997,

Cavender-Bares et al. 2004, McGill et al. 2006, Kraft et

al. 2007, Mayfield et al. 2009, Jabot 2010, Pillar and

Duarte 2010). For example, we previously attempted to

separate the effects of abiotic and biotic factors that

generated the co-occurrence patterns of fish species

across 890 temperate lakes (Helmus et al. 2007b). We

first performed regressions to identify environmental

factors associated with species occurrences and demon-

strated that phylogenetically related species responded

similarly to the same environmental factors (i.e.,

variation in regression coefficients among species for

some environmental factors demonstrated phylogenetic

signal). After removing the effects of environmental

factors, we demonstrated that the residual variation in

species occurrences showed phylogenetic repulsion, in

which closely related species were less likely to co-occur

in the same lake. This investigation could not have been

done using simple metrics of phylogenetic community

structure. However, each of the steps required separate

analyses, leading to the fragmentation of methods and

results that did not facilitate the reconstruction of an

overall picture of phylogenetic community structure.

With a PGLMM, we could perform a single analysis

that simultaneously estimates the (potentially phyloge-

netically determined) sensitivities of species to environ-

mental factors and the (potentially phylogenetically

determined) variation in species occurrences that is not

explained by these environmental factors.

A second limitation is statistical power. For simple

hypotheses, such as that addressed by Webb (2000),

analyses based on a simple metric may have reasonable

statistical power. However, statistical tests of more

complex hypotheses are likely to have low power if the

data and analyses are fragmented. For example,

Cavender-Bares et al. (2006) investigated the patterns

of phylogenetic clustering and phenotypic (trait-based)

clustering in the composition of plant communities in

Florida. For each pairwise combination of species, they

asked whether frequently co-occurring species were

more likely to be phylogenetically related, and whether

they were more likely to share an assortment of

ecological traits. For a taxonomic subset of the species

(oaks), they found that those traits shared by species co-

occurring in the same communities were less likely to

reflect phylogenetic relationships than those traits that

were not associated with particular communities; in

other words, the phenotypic similarities among species

within the same communities were due to convergence

rather than phylogenetic relatedness. These conclusions,

however, were derived from separate analyses of

phylogenies and phenotypes. A PGLMM could provide

a single test that uses all available data and should in

principle provide greatest statistical power (as a

consequence of the Neyman-Pearson lemma; Larsen

and Marx 1981:257–261).

A third limitation is that the metric/randomization

approach only gives qualitative or yes/no answers about

the existence of phylogenetic structure. In contrast, once

a PGLMM is fitted, it can be used, for example, to

predict the presence of a particular species at a

particular site, or predict how frequently two phyloge-

netically related species likely co-occur. Metrics of

phylogenetic community structure are essentially de-

scriptive statistics, whereas PGLMMs are model-based,

inferential statistics that attempt to describe the

statistical processes underlying observed community
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patterns (Judge et al. 1985:1). As such, PGLMMs are

more flexible, powerful, and informative statistical tools
than metrics of community composition.

Below, we illustrate PGLMMs using models designed
to address different questions about phylogenetic

community structure. These models do not make up
an exhaustive list of PGLMMs that can be developed;

instead, we chose models that address frequently asked
questions in the phylogenetic ecology literature (Webb
et al. 2002, Cavender-Bares et al. 2009). We tested these

models using simulated data. Simultaneously, we
applied alternative metric/randomization tests of phylo-

genetic community structure. The comparisons between
PGLMMs and the alternative approaches reveal the

often greater statistical power of PGLMMs. Finally, we
illustrate possible information that can be extracted

from PGLMMs once they are fitted to data, such as the
ability to predict patterns of species occurrences among

communities.

METHODS

PGLMM

Our formulation of PGLMMs includes environmental
variables, species interactions, species traits, and phylo-

genetic relationships to explain the occurrence (pres-
ence/absence) of species in communities. The statistical

models we considered have dependent (predicted)
variables that take values of 0 (absence) and 1

(presence), fixed effects, and random effects that are
used to incorporate specific correlation structures into

the model (McCulloch et al. 2008). They can be
considered multilevel models that contain both fixed

values of coefficients and coefficients that are themselves
considered as realizations from a random variable

(Gelman and Hill 2007).
We focus on five models that demonstrate the range of

problems that PGLMMs can be used to address (Tables
1 and 2). Model I determines whether phylogenetically

related species are more likely to occur in the same site.
Model II addresses whether phylogenetically related

species show similar responses to environmental factors
and hence are more likely to co-occur in the same site.
Model III includes not only the possibility that species

respond to environmental factors in the same way, but
also that species show phylogenetic repulsion (sensu

Helmus et al. 2007b), the pattern in which closely related
species are less likely to co-occur in the same site. Model

IV tests whether trait values held by species can explain
their presence/absence among communities. Finally,

model V compares the explanatory powers of trait
values of species with their phylogenetic relatedness.

Specifically, model V tests the hypothesis that if all
ecologically relevant information were known about

species traits, then there is no additional information
provided by phylogeny. It therefore tests the fundamen-

tal assumption that phylogenetic community structure is
caused by phylogenetic signal in traits that determine the

presence/absence of species in communities; residual

phylogenetic community patterns would indicate that

some trait(s) or other phylogenetic process (e.g.,

biogeography) not included in the analysis affects the

co-occurrence of species.

Model I: phylogenetic signal in the occurrence of

species among sites.—Model I addresses whether phylo-

genetically closely related species are more likely to co-

occur in the same sites. This question has been addressed

in numerous studies using numerous methods (e.g., May

1990, Faith 1992, Crozier 1997, Warwick and Clarke

1998, Webb 2000, Cavender-Bares et al. 2004). Al-

though this question is sometimes framed in terms of

specific hypotheses about the co-occurrence of species,

such as closely related species will likely share similar

environmental tolerances and hence occur in the same

sites, statistically we only asked whether there is

phylogenetic signal in the co-occurrence of species.

To derive an appropriate statistical model, suppose

the presence/absence of n species among m sites

(communities) is given by the n 3 m matrix W whose

jtth element gives the absence or presence of species j at

site t. The statistical analysis involves structuring the

model so that each element in matrix W is a dependent

datum; specifically, the dependent variable is given by

the (nm 31) vector Y ¼ vec(W), where the vec operator

stacks consecutive columns of matrix W on top of each

other. The simplest PGLMM we consider is

PrðYi ¼ 1Þ ¼ li

li ¼ logit�1ðaspp½i� þ bi þ csite½i�Þ

b ; Gaussian
�

0; kronðIm;r
2
sppRsppÞ

�

c ; Gaussianð0;r2
siteImÞ ð1Þ

where Yi is the presence (1) or absence (0) of species

among sites contained in vector Y. The probabilities li
are themselves treated as random variables, with the

distribution of logit(li ) containing both fixed and

random effects. The logit function, logit(l) ¼ log(l/[1
� l]), takes values from �‘ to þ‘ as l varies from 0

to 1.

The model includes as a fixed effect a categorical

variable for each species, aspp[i]; here, the function spp[i]

gives the identity of the species that corresponds to

observation i in the data set (Gelman and Hill 2007:251–

2). This fixed effect factors out species-specific differ-

ences in prevalence among sites (i.e., different species

can occupy a greater or lesser proportion of sites). The

random effect bi accounts for phylogenetic covariances

in the co-occurrence of species at a given site and takes a

different value for each species–site datum. The n 3 n

correlation matrix Rspp is given by the phylogenetic

relationships among species, with the jkth element of

Rspp determining the phylogenetic correlation in the

occurrence of species j and k in the same site. The scalar
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r2
spp is the variance that dictates the overall strength of

the phylogenetic covariances in the co-occurrence of

species. The Kronecker product kron(Im, r2
sppRspp)

generates a (nm3 nm) block-diagonal covariance matrix

for the nm3 1 random variable b whose diagonal blocks

consist of r2
sppRspp, with zeros elsewhere. Finally, the

random effect csite[i] accounts for differences among sites

in the numbers of species they contain (i.e., their species

richness values). The easiest way to conceptualize csite[i]
is to assume there are m values of c selected from a

Gaussian distribution with mean 0 and variance r2
site,

one value for each site. The n values of logit(li ) for every

species in the same site are increased or decreased by

csite[i], where the function site[i] assigns each datum i to a

site.

For Eq. 1 we used the notation of multilevel models

(Gelman and Hill 2007: Chapter 12) that displays the

structure of the model in terms of each datum i, with

fixed and random effects given by Greek and Latin

letters, respectively. As a deviation from multilevel

notation, however, we present the random effects (or

group-level predictors) in vector form to emphasize their

multivariate nature. Thus, the m values of csite[i] are

given by the m3 1 random variable c, and the nm values

of bi are given by the nm 3 1 random variable b.

Implementation of model I requires the full covariance

matrix for csite[i], which is given by kron(r2
siteIm, Jn),

where Jn is the n3 n matrix of ones. The full covariance

matrix for the model, including both species and site

variation, is a block-diagonal matrix having m blocks of

dimension n 3 n of the following form:

r2
sp1;sp1 þ r2

site r2
sp1;sp2 þ r2

site � � � r2
sp1;spn þ r2

site

r2
sp1;sp2 þ r2

site r2
sp2;sp2 þ r2

site r2
sp2;spn þ r2

site

..

. : : : ..
.

r2
sp1;spn þ r2

site r2
sp2;spn þ r2

site � � � r2
spn;spn þ r2

site

0
BBBB@

1
CCCCA

where r2
spj;spk is the jkth element of r2

sppRspp.

In this model, the overall strength of phylogenetic

signal in the co-occurrence of species is determined by

r2
spp, and the overall variation among sites in number of

species is determined by r2
site. Because the variance of a

binary process with expectation l is l(1 � l), the

variances in Y are determined solely by the expectations

li, and there is no ‘‘unexplained’’ variance in logit(li )

(Gelman and Hill 2007: Chapter 5). The addition of a

random variable for unexplained variation in logit(li )

would have indistinguishable effects from decrementing

TABLE 1. Phylogenetic general linear mixed models (PGLMMs) I–V.

Model
Equation
number

Species
prevalence

Species
occurrence

Species
sensitivity

Species
repulsion

Species
traits

Site
richness

I 1 F P . . . . . . . . . R
II 2 F � � � P, R � � � � � � R
III 3 F � � � F P � � � R
IV 7 F � � � � � � � � � R R
V 8 F P � � � � � � R R

Note: Components of the models are identified as: F, fixed effect; R, random effect; and P,
phylogenetic effect. Ellipses indicate that the corresponding components are absent from a model.

TABLE 2. Summary of simulation models used to test the performance of statistical models I–V.

Model Simulation model Statistical model Test

I two environmental variables;
phylogenetic patterns in sensitivity
to two gradients

zero environmental variables;
phylogenetic patterns in co-
occurrence

detect phylogenetic patterns in co-
occurrence

II two environmental variables;
phylogenetic patterns in sensitivity
to two gradients

one environmental variable;
phylogenetic patterns in co-
occurrence; species-specific and
phylogenetic patterns in response
to a single environmental gradient

detect phylogenetic patterns in species
sensitivity to an environmental
gradient

III one environmental variable ;
phylogenetic repulsion

one environmental variable;
phylogenetic repulsion

separate phylogenetic repulsion from
sensitivity to an environmental
gradient

IV one environmental variable;
phylogenetic patterns in sensitivity
to a gradient

zero environmental variables; trait
variation among species

detect trait-based patterns in co-
occurrence

V one or two environmental variables;
phylogenetic patterns in sensitivity
to gradients

zero environmental variables; trait
variation among species;
phylogenetic patterns in co-
occurrence

distinguish trait-based from
phylogenetic effects on co-
occurrence

All multiplicative survival, e.g., see Eq. 9
and following: Pjt ¼ px, jt py, jt ps,t

generalized linear mixed model
(GLMM), e.g., see Eq. 1: li ¼
logit�1(aspp[i] þ bi þ csite[i])
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the variances r2
spp and r2

site, thereby introducing an

identifiability problem in which it is impossible to

estimate the unexplained variation independently of

r2
spp and r2

site. In general, care needs to be taken in

constructing models so that all the parameters capture

distinct properties of the data; when this is not the case,

parameter estimates can be highly variable and strongly

correlated with each other, the symptoms of non-

identifiability.

The choice of which factors to include as fixed vs.

random effects needs to be made strategically. The

factor bi is necessarily a random effect so that it is

possible to incorporate the phylogenetic covariance

matrix. We included csite[i] as a random effect because

the nonzero elements of the covariance matrices

associated with bi and csite[i], kron(Im, r2
sppRspp) and

kron(r2
siteIm, Jn), respectively, perfectly coincide (see

matrix two paragraphs above). This occurs because bi
contains information about the co-occurrence of phylo-

genetically related species in the same site, and csite[i]
contains information about whether more species

overall (regardless of phylogenetic relationships) occur

in the same site. The reason for including csite[i] as a

random effect is that otherwise variation in the number

of species per site could cause the false identification of

phylogenetic patterns; that is, species may be more likely

to co-occur in sites due to site-to-site variation rather

than phylogenetic relationships. We incorporated the

variation in prevalence among species, aspp[i], as a fixed

effect; it could be treated as a random effect, although in

application we have found that minimizing the number

of random effects in the model generally leads to better

estimates of those random effects that are included. By

including aspp[i] in the model, phylogenetic patterns in

the co-occurrence of species captured by r2
sppRspp will

not reflect phylogenetic patterns observed in species-

specific mean incidences among sites.

To derive a form of the phylogenetic covariance

matrix r2
sppRspp, we assume that the occurrence of

species is governed by a hypothetical (unmeasured) trait

that evolves up the phylogenetic tree. If evolution

follows a Brownian motion process, in which incremen-

tal increases and decreases in the trait value occur at

random, the distribution of trait values of species at the

tips of the phylogenetic tree is multivariate Gaussian; the

covariance matrix r2
sppRspp has jkth elements that are

proportional to the shared branch length between

species j and k, with the diagonal elements equaling

one. Variation in this hypothetical trait generates

variation in li that then affects the occurrence of species

among sites. Using other evolutionary models to derive

r2
sppRspp is possible, such as the Ornstein-Uhlenbeck

(OU) stabilizing selection model (e.g., Blomberg et al.

2003); however, there is an identifiability problem with

using the OU model since it depends on a parameter

governing the strength of stabilizing selection that

cannot be distinguished from r2
spp when fitting pres-

ence/absence data. In our formulation of r2
sppRspp,

model I can only detect communities with a phyloge-

netically underdispersed structure (i.e., closely related

species generally co-occur). With model III we describe

an approach to detect the opposite structure, phyloge-

netic overdispersion.

Model II: phylogenetic signal in the sensitivity of

species to an environmental factor.—Phylogenetically

closely related species are often assumed to be ecolog-

ically similar, and therefore, if there is a set of strong

environmental drivers determining the distribution of

species, phylogenetically related species that share

common responses to the environmental drivers should

be more likely to co-occur. To address this hypothesis,

one approach is to calculate phylogenetic differences in

the species composition of communities and associate

these differences with differences in environmental

factors. For example, Hardy and Senterre (2007)

correlated a phylogenetic measure of differences be-

tween tree communities (beta diversity) in Equatorial

Guinea with environmental differences between sites

and found that greater compositional differences be-

tween communities were associated with greater differ-

ences in altitude. In contrast to this approach, the model

we developed here uses data on environmental differ-

ences between sites to investigate directly whether

phylogenetically related species respond to environmen-

tal factors in similar ways. The analysis can be

envisioned as a set of logistic regressions of species

presence/absence on an environmental variable, where

these regressions are performed simultaneously for all

species in a species pool. The model then tests whether

there is phylogenetic signal in the variation in logistic

regression coefficients among species (Helmus et al.

2007b).

This model has the following form:

PrðYi ¼ 1Þ ¼ li

li ¼ logit�1ðaspp½i� þ bspp½i�xsite½i� þ csite½i�Þr2
a

bspp½i� ¼ bþ eslope½i� þ gphylo½i�

e ; Gaussianð0;r2
slopeInÞ

g ; Gaussianð0;r2
phyloRsppÞ

c ; Gaussianð0;r2
siteImÞ: ð2Þ

The difference from model I is that logit(li ) is assumed

to depend linearly on the environmental factor x

through the regression coefficient bspp[i]. The regression

coefficient itself is assumed to be a Gaussian random

variable with mean b and covariance matrix given the

sum of r2
slopeIn and r2

phyloRspp. The first of these

covariance matrices accounts for species-specific differ-

ences that are not phylogenetically related among

species, while the second accounts for phylogenetic
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relatedness assuming that covariances among species are

determined by a Brownian motion model of evolution.

For ease in interpretation, we have assumed the

environmental variable x is centered on zero, so that

differences in aspp[i] among species correspond to

species-specific mean incidence among sites.

To implement model II, we need the covariance

matrix for bspp[i]xsite[i]. This is given by Rslope¼diag(X)3

kron(Jm, r2
slopeInþ r2

phyloRspp) 3 diag(X), where X is the

(nm3 1) vector containing values of xi, diag() represents

the (nm3 nm) diagonal matrix whose diagonal elements

are X, and 3 denotes matrix multiplication. The nm 3

nm covariance matrix Rslope incorporates information

about both the phylogenetic correlations among species,

Rspp, and the environmental factor, X.

In this model, we assume that phylogenetic patterns of

species occurrences are caused by related species

responding similarly to the environmental factor x.

Unlike Eq. 1, there is no random effect corresponding to

species alone. This is a strategic decision driven by the

statistical difficulty of separating phylogenetic effects

that operate through sensitivities to an environmental

factor from those that do not. When confronted with the

problem of distinguishing these two sources of phyloge-

netic pattern in real data sets, such as when species

interactions cause correlations among closely related

species that are independent of any environmental

factor, a reasonable approach is to fit models with

bspp[i]xsite[i] (as in model II) or with bi (as in model I), and

then compare the fit of the two models.

Model III: phylogenetic attraction and repulsion.—The

third model we consider assumes that phylogenetically

closely related species might show similar responses to

an environmental factor (leading to ‘‘phylogenetic

attraction,’’ Helmus et al. 2007b), yet after factoring

out this attraction phylogenetically closely related

species tend not to co-occur (leading to ‘‘phylogenetic

repulsion’’; Helmus et al. 2007b). This scenario could

arise if there were simultaneous environmental filtering,

with related species responding similarly to the filter,

and competition in which related species are more likely

to exclude each other.

The model has the following form:

PrðYi ¼ 1Þ ¼ li

li ¼ logit�1ðaspp½i� þ bspp½i�xsite½i� þ csite½i� þ diÞ

c ; Gaussianð0;r2
siteImÞ

d ; Gaussian
�

0; kronðIm;r
2
repulseRrepulseÞ

�
: ð3Þ

Many terms are identical to the preceding models. In

contrast to model II, however, species-specific differenc-

es in the slopes in response to the environmental factor x

are treated as a fixed effect. The random effect di gives

the effect of phylogenetic repulsion on species co-

occurrence contained within the correlation matrix

Rrepulse.
To implement this model that includes phylogenetic

repulsion, we need a biologically sensible covariance

matrix Rrepulse. For simplicity, we used r2
repulseRrepulse ¼

(r2
sppRspp)

�1; this formulation guarantees that r2
repulse

Rrepulse is a legitimate covariance matrix (i.e., is positive
definite). In this formulation, the strength of repulsion

between any two species is proportional to their
phylogenetic relatedness. Theoretical justification for

this formulation is given in Appendix A.

Model IV: trait-based community structure.—In mod-
els I–III phylogenetic information was used implicitly as

a surrogate for information about species traits that
dictate their sensitivities to biotic or abiotic forces. Here,

we considered the case in which there is information for

each species about traits that determine the sensitivities
of species to an unknown environmental factor. We

were not interested in whether there are phylogenetic
patterns in the occurrence of species among sites,

because we assume that any phylogenetic signal is
absorbed by information about species traits; phyloge-

netic signal could occur in the distribution of traits

among species, but because we assume that these trait
values are known, this phylogenetic signal gives no

additional information. Although we know trait values,
we assume that we do not know what environmental

factors drive the trait-based pattern of presence/absence
of species at sites.

To build a statistical model, we needed to derive an

expected covariance matrix for the co-occurrence of
species based upon their known trait values but with no

knowledge of the value of environmental factors. Here,
we selected a simple though realistic derivation. We

assume that for a given species j, the probability that it

occurs in a site depends on an unmeasured environmen-
tal factor x:

logitðliÞ ¼ ai þ bspp½i�xi þ ei ð4Þ

where bspp[i] is the known (i.e., fixed) trait-based
sensitivity of species to the environmental factor, and

ei is a Gaussian random variable with expectation zero.
If we assume values of bspp[i] are standardized to have

mean zero, then the covariance between the occurrence
of two species is

cov
�

logitðliÞ; logitðli 0Þ
�
¼ bspp½i�bspp½i 0 � varðxÞ ð5Þ

where x is an unknown value of the environmental
random variable. Thus, a reasonable covariance matrix

for species based on their trait values is

r2
traitRtrait ¼ r2

traitðbb 0Þ ð6Þ

where b is the n 3 1 vector of values of b. Technically,
Rtrait is not a well-defined covariance matrix because it is
not positive definite; nonetheless, it is positive semi-

definite, and therefore, can be used without logical or

computational difficulties.
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The overall statistical model can be formulated

similarly to model I as follows:

PrðYi ¼ 1Þ ¼ li

li ¼ logit�1ðaspp½i� þ csite½i� þ fiÞ

c ; Gaussianð0;r2
siteImÞ

f ; Gaussian
�

0; kronðIm;r
2
traitRtraitÞ

�
: ð7Þ

This model assumes that the covariance in the occur-

rence of species through r2
traitRtrait is proportional to

the product of their standardized trait values.

Model V: trait-based vs. phylogenetic community

structure.—In model IV we assume that all information

about the similarity among species important for their

co-occurrence in communities is captured by measured

trait values. Alternatively, we could assume that beyond

trait values, there is also information provided by their

phylogenetic relationships (e.g., Cavender-Bares et al.

2006). This might occur, for example, if in addition to

measured traits among species, there are unmeasured

traits that show phylogenetic patterns or there is some

type of phylogeographic structure in the community

data set. In this case, there may be simultaneous effects

of trait values and phylogeny on community composi-

tion.

The appropriate model that includes both trait-based

and phylogenetic processes determining the presence/

absence of species among communities is a merger of

models I and IV:

PrðYi ¼ 1Þ ¼ li

li ¼ logit�1ðaspp½i� þ bi þ csite½i� þ fiÞ

b ; Gaussian
�

0; kronðIm;r
2
sppRsppÞ

�

c ; Gaussianð0;r2
siteImÞ

f ; Gaussian
�

0; kronðIm;r
2
traitRtraitÞ

�
: ð8Þ

This model serves as a test of the hypothesis that, if full

information were known about species traits, then

phylogenetic information would not provide additional

information about species occurrences in communities.

In other words, phylogenetic information serves only as

a surrogate for trait information.

Estimation.—There are various approaches that, in

principle, can be used for parameter estimation in

PGLMMs, although none is easy to implement (Bolker

et al. 2009). For example, covariance matrices cannot be

specified in the GLMM R package lmer (R Develop-

ment Core Team 2005, Bates et al. 2008), although this

limitation might be overcome in future versions of lmer

(D. Bates, personal communication). Both WinBUGS

and the MCMCglmm R package (Hadfield 2010)

estimate parameters with Markov Chain Monte Carlo

(MCMC) approaches (Gelman and Hill 2007). Howev-

er, specialized programming is required for both, and we

found our models difficult to implement.

Our estimation approach combines penalized quasi-

likelihood (PQL) and restricted maximum likelihood

(REML) in a two-step process. Details are presented in

Appendix B, along with extensive numerical explora-

tions investigating the statistical properties of the

approach. In brief, estimation is performed iteratively.

First, the coefficients for fixed effects are estimated via

PQL conditional on the working estimates of the

variances of the random effects. Second, the variances

of the random effects are recalculated using REML with

the estimates conditional on the updated estimates for

the fixed effects. These steps are sequentially iterated to

convergence. For statistical inference about the varianc-

es in the random effects r2, we used the profile restricted

likelihood conditional on the PQL estimates of the

coefficients of the fixed effects. For moderately sized

problems (number of species–sites nm , 2000) our

approach is fast and robust. MATLAB (MathWorks

2005) code is provided for this procedure in the online

Supplement, which has been translated into the R

statistical language in the package Picante (Kembel et

al. 2010).

Performance tests

We assessed the performance of our PGLMMs using

simulated data sets that contain patterns that phyloge-

netic community methods are designed to identify. To

compare with the performance of the PGLMMs, we

used alternative ‘‘standard’’ approaches from the liter-

ature that aim to identify the same patterns. We tuned

the simulations so that the patterns were weak, thereby

testing the statistical power of PGLMMs against

alternative approaches. Table 2 summarizes the simula-

tion models and tests.

Phylogenetic community assembly simulations.—The

community assembly simulations we used to investigate

the performance of PGLMMs contain environmental

gradients, trait-based sensitivities to these gradients, and

phylogenetic repulsion, as appropriate for the different

tests. The simulation models differ from the statistical

models I–V in both structure (how presence/absence of

species are modeled) and often in terms of the number of

environmental variables included (Table 2). For all

simulations, we assume that there are 31 sites (commu-

nities) and 32 species. While phylogenetic tree shape may

affect the power of PGLMMs to detect phylogenetic

patterns as it does for the standard phylogenetic ecology

approaches (Kraft et al. 2007, Swenson 2009), assessing

this effect is beyond the scope of the work we present

here. In practice, the power of a PGLMM should be

assessed for the particular tree that is used with a
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particular data set. For simplicity we used a fully

balanced tree (Fig. 1).

The response of species to an environmental gradient

is given by the inverse logit function:

px; jt ¼ qt
expðaþ bjxtÞ

1þ expðaþ bjxtÞ
ð9Þ

where px, jt is the probability of species j occurring at site

t (as determined by the environment gradient x), xt is the

value of the environmental factor at site t (centered so

that the mean value of xt is zero), and a and bj are

coefficients. We assume that a takes the same value for

each species, whereas the sensitivity of species to the

environmental gradient, bj, takes species-specific values.

In particular, bj is assumed to be a trait that evolves in a

Brownian motion fashion up the phylogenetic tree and

therefore has a Gaussian distribution with covariance

matrix r2
sppRspp. We also impose a reduction in the

probability of species occurring in a site using the

random variable qt that is selected for each site t from a

uniform distribution between 0.5 and 1. This simulates

variation among sites in species richness values that is

independent of the environmental gradients. The overall

probability that species j occurs in site t having values xt
and yt for two environmental factors x and y is Pjt ¼
px, jtpy, jt. Thus, components that give the probabilities of

occurring in a site as determined by different environ-

mental gradients or site-specific factors are combined

multiplicatively to give the overall probability that a

species occurs in a given site. This contrasts PGLMMs

I–V in which all independent variables are contained

within a logit�1 function.

An example of simulated values of Pjt is given in Fig.

1. When analyzing the data only for the existence of

phylogenetic patterns in the occurrence of species

(models I, IV, and V), we removed any sites in the

simulated data sets with no species. In contrast, for

models II and III that include environmental informa-

tion, we did not remove any sites, because even sites with

no species still provide information about the effect of

the environmental factor on species occurrences. In all

models we only considered simulations in which all

species occurred in at least one site.

To incorporate repulsion among phylogenetically

related species in simulations for model III, we assume

that the probability of species j occurring in site t is given

by

pr; jt ¼
expðcþ djÞ

1þ expðcþ djÞ
ð10Þ

where the species-specific values dj are assumed to have a

Gaussian distribution with covariance matrix Rrepulse in

a manner similar to model III (Eq. 3). The overall

probability that species j occurs at site t having value xt
for the environmental factor x is Pjt ¼ px, jtpr, jt.

For simulations to assess models III and IV, there is a

single environmental factor affecting community com-

position, whereas for the other models there are two.

For model III we wanted to statistically extract all

environmental variation that caused phylogenetic at-

traction in order to expose phylogenetic repulsion. For

model IV we wanted to determine whether community

composition could be fully explained by trait-based

responses to the environment. We therefore only

included one environmental factor in the simulations

for these models. For the other models, we used two

environmental factors to allow a residual phylogenetic

pattern even after removing the effects of a single

environmental factor. For all models, the values of

environmental factors were evenly spaced across sites,

and when there were two factors they were assigned

independently of each other. Thus, the sites can be

considered to fall along one (models III, IV) or two

unrelated (models I, II, and V) gradients.

Scaling parameters in the simulation models were

selected so that the average numbers of sites occupied

per species were 4.3 6 1.7 (mean 6 SD; models I, II, and

V), 7.8 6 2.1 (model III), and 11.6 6 3.7 (model IV).

There were averages of 4.8 6 2.0 (models I, II, and V),

8.0 6 2.0 (model III), and 12.0 6 3.5 species per site

(model IV). Thus, the simulations generate relatively

small communities that should challenge the statistical

techniques to find phylogenetic patterns. The MATLAB

FIG. 1. Probability of occurrence of 32 species among 31
sites from a simulation model (darker indicates greater
probability). Species are phylogenetically related according to
a fully balanced tree. Sites are sorted by one of two simulated
environmental gradients, and phylogenetic patterns in species
sensitivities to the environmental gradients are seen in the
similar distributions of related species among sites.
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code in the online Supplement gives details of the

simulations and parameter values.
Alternative to model I: phylogenetic signal in the

occurrence of species among sites.—As an alternative to
model I, we tested for the presence of phylogenetic

signal in the occurrence of species among sites using the

following procedure. For each of the 31 sites in the
simulated data sets, we computed the mean pairwise

phylogenetic nodal distance between species (mean
phylogenetic distance, MPD; Webb 2000), and then

took the average MPD among all sites. To obtain a
statistical test for phylogenetic signal, we generated

10 000 permutation data sets by permuting species
among sites, thereby preserving the expected number

of sites occupied by each species. We then calculated the
average MPD value for each randomized data set.

Because under the null hypothesis the value of MPD is
independent of the number of species in sites, we did not

use a permutation algorithm designed to maintain the

same number of species per site. Significant phylogenetic
signal was determined if the average MPD of the

original data set fell below the 2.5% quantile of the
permutation distribution of the 10 000 null average

MPD values.
Alternative to model II: phylogenetic signal in the

sensitivity of species to environmental variation.—To
compare with model II, we used the approach of Helmus

et al. (2007b). For each simulation data set, we fit a

logistic regression (with a Firth correction) of the
presence/absence of each species in the data set on one

of the environmental factors. We then tested for
phylogenetic signal in the coefficients of these regres-

sions with a phylogenetic linear regression using the
MATLAB code RegressionV2.m (Lavin et al. 2008).

RegressionV2.m fits data assuming that the residual
variation follows an Ornstein-Uhlenbeck process of

evolution. This gives an estimate of the parameter d �
0 that takes a value of 0 if there is no phylogenetic signal

and 1 if the signal is that predicted by a Brownian
motion model of evolution. Statistical significance of the

null hypothesis of no signal was tested using boot-

strapping. Programs for these calculations are available
in the R package Picante (Kembel et al. 2010).

Alternative to model III: phylogenetic attraction and
repulsion.—As an alternative to model III, we again used

the approach of Helmus et al. (2007b). First, we factored
out the effect of the environmental gradient by

regressing the presence/absence of each species on the
environmental factor as done for model II. We then

computed standardized residuals from each logistic

regression:

qjt ¼
yjt � ljt

½ljtð1� ljtÞ�1=2
ð11Þ

where

ljt ¼
expðb0; j þ b1; jxtÞ

1þ expðb0; j þ b1; jxtÞ

and yjt is the presence (1) or absence (0) of species j at

site t, b0, j and b1, j are the species-specific logistic

regression coefficients, and xt is the value of the

environmental factor at site t. For each pair of species,

the covariance between rjt values is a measure of how

likely it is that the species co-occur after the environ-

mental effect is removed. We correlated these covari-

ances against species pairwise phylogenetic covariances

given by Rspp. For each simulation data set, this

observed correlation value was compared to the

distribution of values constructed by permuting rjt
among sites and recomputing the correlations 10 000

times. Significant phylogenetic repulsion is determined if

the resulting correlation c fell below the 2.5% quantile of

the permutation distribution.

Alternative to model IV: trait-based community struc-

ture.—Model IV investigates whether community com-

position can be explained by the traits exhibited by

species. An alternative method is to use a metric of

community trait spacing (Cornwell and Ackerly 2009

and references therein). For simulated data sets we

computed the standard deviation in trait values shared

by species in the same site and then averaged the values

across all sites. For a statistical test, we permuted the

species among sites 10 000 times to construct a

distribution of average standard deviations in trait

values under the null hypothesis that species (and hence

trait) distributions were independent of site (Cornwell

and Ackerly 2009). Statistically significant trait-based

community structure was identified if the observed

average standard deviation in trait values fell below

the 2.5% quantile of the permutation distribution.

Alternative to model V: trait-based vs. phylogenetic

community structure.—Model V addresses whether

information about species trait values is sufficient to

explain phylogenetic community structure or whether

even after incorporating trait information there is

residual phylogenetic structure. We know of no alter-

native method to PGLMM that can be used to address

this question. Therefore, we compared the results of

model V to those from model I applied to the same

simulated data sets. Model I identifies phylogenetic

structure without incorporating trait information,

whereas model V is identical to model I except trait

information is incorporated. Comparing the two dem-

onstrates how much information about community

composition can be extracted from trait information.

RESULTS

For each PGLMM and corresponding alternative, we

simulated 100 data sets under conditions that give

relatively weak phylogenetic patterns. The PGLMMs all

had equal or greater power to detect phylogenetic

patterns than alternative tests (Table 3). To investigate

whether this was due to PGLMMs giving false positives

(Type I errors), we repeated the simulations under the

assumption that species were phylogenetically unrelated.

Both PGLMMs and the alternatives give close to the
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expected false positive rates at the nominal a , 0.025

(one-tailed) level (bottom half of Table 3). Bootstrap

simulations to analyze the statistical properties of the

PGLMM estimator are given in Appendix B.

We will discuss the performance of each model

separately. We then highlight other analyses that are

possible once a PGLMM is fit to data (analyses that are

not possible using metric/randomization methods). In

particular, we illustrate how PGLMMs partition sources

of variance in community composition and how

PGLMMs predict the occurrence of species from the

presence/absence of phylogenetically related species.

Identification of community structure

Model I: phylogenetic signal in the occurrence of

species among sites.—In 87% of the data sets, model I

identified values of rspp statistically significantly greater

than zero (Fig. 2). The alternative test using mean

phylogenetic distances among species (MPD) performed

almost as well, rejecting the null model of random

community assembly in 73% of the data sets (Table 3).

As expected, there is a negative correlation between rspp

and standardized average MPD values across commu-

nities (Fig. 2), because larger rspp and smaller average

MPD correspond to greater phylogenetic community

structure.

Model II: phylogenetic signal in the sensitivity of

species to an environmental gradient.—For simulations in

which the distribution of species was determined by two

environmental factors, and one of these factors was used

to predict the patterns of species occurrences among

sites, 83% of the simulated data sets were identified by

model II (Eq. 2) as having statistically significant

phylogenetic signal, rphylo . 0 (Fig. 3). In contrast,

the estimates of phylogenetic signal, d, from the

TABLE 3. Number of simulation runs out of 100 showing statistically significant phylogenetic patterns in community composition
(a¼ 0.025, one-tailed).

Model Description

Simulated with phylogenetic signal Simulated without phylogenetic signal

PGLMM� Alternative PGLMM� Alternative

I species co-occurrence 87 73 5 3
II response to environmental gradient 83 27 7 0
III phylogenetic repulsion 53 0 1 0
IV trait-based community structure 64 19 1 4

� Phylogenetic generalized linear mixed model.

FIG. 2. PGLMM I (phylogenetic generalized linear mixed
model) vs. an alternative test: for 100 simulation data sets, the
average mean phylogenetic distance (MPD) values and the
estimates of the measure of phylogenic signal, rspp, from model
I (Eq. 1). The average MPD values are standardized using the
permutation distribution so that under the null hypothesis of no
phylogenetic signal the expectation is 0 and the variance is 1.
Four-pointed stars give values of rspp that are statistically
different from 0 at the a , 0.025 level as obtained by profile
likelihoods, and þ’s denote nonsignificant values.

FIG. 3. PGLMM II vs. an alternative test: for 100
simulation data sets, phylogenetic variation in species-specific
sensitivities to one of two environmental factors, rphylo (model
II, Eq. 2), vs. phylogenetic signal estimates, d, in the values of
logistic regression slopes. Four-pointed stars give values of
rphylo that are statistically different from 0 at the a , 0.025
level as obtained by profile likelihoods, and þ’s denote
nonsignificant values.
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alternative method were only statistically significant for

27% of the simulated data sets. Also, there was only a

weak positive relationship between rphylo and d.

Model III: phylogenetic attraction and repulsion.—

Model III accounts for the effect of environmental

gradients that generate positive co-occurrences between

phylogenetically related species, and identifies phyloge-

netic repulsion as residual negative co-occurrence

patterns that could result if phylogenetically closely

related species were more likely to exclude each other.

Model III identified statistically significant phylogenetic

repulsion (rrepulse . 0) in 53 of 100 simulated data sets

(Table 3). In contrast, the alternative method identified

statistically significant phylogenetic signal in none of the

data sets (Table 3). There was a negative correlation

between estimates of rrepulse calculated from model III

and the correlations c between residual covariances and

phylogenetic covariances (Fig. 4), although the statisti-

cal power of the alternative method based on c was

much lower. Helmus et al. (2007b) found statistically

significant repulsion in a fish community data set,

although it contained data from 890 lakes, which

presumably made up for the apparently low statistical

power of this test.

Model IV: trait-based community structure.—Model

IV is designed to identify whether information about

trait values of species can explain species co-occurrences

among communities. In 64 of 100 simulation data sets

(Fig. 5) model IV identified trait-based patterns in

community composition (rtrait . 0, a ¼ 0.025, one-

tailed). In comparison, 19 of the data sets were identified

as having trait-based signal by the alternative method

that depends on the variation in trait values among

species within the same community (e.g., Cornwell and

Ackerly 2009).

Model V: trait-based vs. phylogenetic community

structure.—The use of phylogenetic information in

assaying community structure is often justified as a

surrogate for trait-based information when species traits

are unknown (e.g., Webb 2000). To investigate this

proposition, we compared model V that contains both

trait and phylogenetic information with model I that

contains only phylogenetic information. Neither model

uses information about the environmental factor at each

site; if this were available, then it could be used to relate

species traits to environmental conditions as in model II.

Model V identified trait-based patterns in all simulated

data sets, while it identified residual phylogenetic

patterns in only 1 (Table 4). Model I identified

phylogenetic patterns in 85 of the simulation data sets.

Therefore, inclusion of trait information in model V

accounts for almost all of the phylogenetic patterns that

were identified by model I. In other words, if there is

information about species traits that determines the

composition of communities, then all phylogenetic

information is captured by trait information.

In a second simulation study, we considered two

environmental gradients. For model V we assumed only

trait values associated with one of the environmental

factors are known. In this case, model V identified trait-

based patterns in all of the 100 simulated data sets, and

identified phylogenetic patterns in 47 (Table 4). Finding

FIG. 4. PGLMM III vs. an alternative test: for 100
simulation data sets, phylogenetic repulsion in the co-occur-
rence of species, rrepulse, when accounting for the effect of an
environmental gradient (model III, Eq. 3) vs. the correlation
between the covariances in species standardized residuals and
phylogenetic covariances, c. Values of c are standardized using
the permutation distribution so that under the null hypothesis
of no phylogenetic signal the expectation is 0 and the variance is
1. Four-pointed stars give values of rrepulse that are statistically
different from 0 at the a , 0.025 level as obtained by profile
likelihoods, andþ’s denote nonsignificant values.

TABLE 4. Number of simulation data sets out of 100 showing statistically significant trait and
phylogenetic patterns in community composition as assessed by models I and V (a¼ 0.025, one-
tailed).

Pattern

One environmental factor Two environmental factors

Model I Model V Model I Model V

Traits (rtrait . 0) � � � 100 � � � 100
Phylogeny (rspp . 0) 85 1 87 47

Notes: For model I, no trait value was incorporated (indicated by ellipses). For model V species
sensitivities were known for only one environmental factor.
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phylogenetic patterns is to be expected, because the

occurrence of species among sites in part depends on the

second environmental gradient for which species sensi-

tivities have a phylogenetic signal. The performance of

model I to identify phylogenetic patterns is similar to the

case with a single environmental gradient, with phylo-

genetic signal found in 87 data sets (Table 4).

Uses of fitted models

PGLMMs give fitted models that can be used to

extract information from data sets. To illustrate this, we

simulated a data set in which there was a single

environmental gradient, phylogenetic signal in species

sensitivities to the gradient, and additional site-to-site

variation in the number of species (Fig. 6). We then fit

these data using model I (Table 5). Because the

PGLMMs are binary models, there is no residual

variance that is estimated in the statistical model;

instead, there is variability generated by the binomial

sampling process that cannot be eliminated regardless of

how well the model fits the data. The variance estimates

of random effects, in this case r2
spp and r2

site, give a

breakdown of the covariances in species occurrences

according to species-specific patterns that depend on

phylogeny, r2
spp, and site-to-site variation in the number

of species they contain, r2
site. Furthermore, the variance

r2
a in the fixed estimates of differences in species mean

incidence ai approximates the contribution of variation

in species occurrences across all communities in

community structure. For a formal partitioning of

variances, it would generally be preferable to treat ai
as a random effect, provided the assumption that ai
follows a Gaussian distribution is valid. The variances

occur in logit(li ) where li¼Pr(Yi¼1), rather than in the

probability li itself. Nevertheless, they can still be

interpreted as a measure of the proportion of commu-

nity structure explained by different forces. For this

simulated data set, the greater proportion of the

variance attributed to r2
spp (71%; Table 5) in comparison

to r2
site (16%) and r2

a (13%) indicates that phylogenet-

ically correlated among-species variation in occurrences

explains most of the community structure.

In addition to partitioning variances, PGLMMs can

also be used to make predictions about the occupancy of

FIG. 5. PGLMM IV vs. an alternative test: for 100
simulation data sets, the trait-based pattern in the co-
occurrence of species, rtrait (model IV, Eq. 7), vs. the average
standard deviation in trait values among species in the same
communities, std(traits). Values of std(traits) are standardized
using the permutation distribution so that under the null
hypothesis of no phylogenetic signal the expectation is 0 and the
variance is 1. Four-pointed stars give values of rtrait that are
statistically different from 0 at the a , 0.025 level as obtained
by profile likelihoods, andþ’s denote nonsignificant values.

FIG. 6. Simulation data set used to estimate model 1 (Table
5). The occurrence (black squares) of species 1 is given in the
leftmost column, and the occurrences at site 1 are given by the
lowest row (see Uses of fitted models in Results).

TABLE 5. A partial summary of statistical results from
PGLMM I (see Eq. 1) fit to a simulated data set.

Parameter Estimate 95% CL

Explained variance (%)

Random effects All effects

r2
spp 0.92 (0.48, 1.47) 81 71

r2
site 0.21 (0, 0.65) 19 16

(r2
a)� 0.16 13

Note: The restricted maximum likelihood (REML) log
likelihood ¼�2109.4, and the REML AIC ¼ 4286.8.

� The parameter r2
a is estimated as the variance in the

fixed estimates of ai, and therefore, confidence limits are not
computed.
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sites. To illustrate this, suppose we ask whether species 1

(the leftmost species in Fig. 6) occurs in site 1 (the

bottom site in Fig. 6) given that we know something

about the presence/absence of phylogenetically related

species in site 1. In the absence of additional informa-

tion, the probability of species 1 occurring in site 1 is

0.38 (Table 6). If species 2 is known to be present,

however, the probability that species 1 occurs increases

to 0.48, while if species 2 is known to be absent, the

probability that species 1 occurs decreases to 0.33.

Similarly, the presence or absence of both species 2 and

3 changes the probability for species 1 to 0.54 and 0.29,

respectively. As information about more species is

obtained, the probability that species 1 occurs in site 1

can be refined (Table 6).

Although we have used only model I for these

illustrations, the other PGLMMs can similarly be used

to partition variances and make predictions about

species co-occurrences. Fitted models can also be used

to simulate communities that have the same statistical

attributes (to the limit defined by the model) of a real

data set. Thus, fitted models become useful tools for

exploring properties of data sets.

DISCUSSION

We have demonstrated how PGLMMs can be

formulated to address a variety of problems about the

phylogenetic structuring of communities while poten-

tially incorporating information about environmental

factors and species traits. The PGLMMs provided equal

or better statistical power than the alternative methods

we tried. Furthermore, the PGLMMs allowed complex

hypotheses to be tested in single analyses that use all

available data. This compactness simplifies analyses and

increases the statistical power of tests.

We also presented two simple examples of the

advantages of fitting inferential models to data rather

than relying on metrics and randomization tests to

identify phylogenetic patterns. PGLMMs are built

around hypothesized processes that underlie the statis-

tical distribution of data, and fitting PGLMMs involves

estimating parameters that give a match between the

observed data and underlying processes that could

generate them. Thus, the goal of PGLMMs is not to

detect pattern in a single data set, but instead to model

the underlying processes that generated the data. Once a

PGLMM is fit, it opens up all of the tools of inferential

statistics, such as assessing the magnitudes of model

parameters, predicting new values of the response

variable, and employing diagnostic tests for model

goodness of fit (Judge et al. 1985, Gelman and Hill

2007, Bolker et al. 2009). We presented only two simple

examples from the wide range of possible questions that

could be asked with fitted PGLMMs.

As with any statistical model fitting, care must be

taken in formulating an appropriate model. We

advocate starting with careful inspection of the data

and possibly using established metrics and randomiza-

tion tests to get an understanding of the data before

formulating a PGLMM. Appropriate formulations will

depend on both a given data set and the hypothesis of

interest. If there are contrasting hypotheses about a

given data set that do not involve the magnitude (or

difference from zero) of a specific parameter, then model

selection (e.g., with Akaike’s Information Criterion) can

be used to compare different models (Akaike 1973,

Burnham and Anderson 2002, Vaida and Blanchard

2005). Because the estimation approach we used is based

on restricted maximum likelihood estimation (REML),

models should not be compared that differ in fixed

effects. This is because REML is based on the

conditional likelihood function (Smyth and Verbyla

1996), with resulting estimates of the variance compo-

nents (random effects) of the model conditioned on the

mean components (fixed effects). In practice this might

only be a minor limitation, because competing models

will most likely differ in random effects. Nonetheless,

maximum likelihood (ML) approaches could be used for

unrestrained model selection (Appendix B).

The greatest limitation of application of PGLMMs is

the absence of general software to perform the necessar-

ily calculations. This will likely change quickly with

continued development of versatile packages like lmer in

the R statistical language (R Development Core Team

2005, Bates et al. 2008). Our approach (Appendix B) can

be used for a wide range of PGLMMs, and simulations

show it has good statistical performance (in fact, at least

as good as lmer in applications to non-phylogenetic

GLMMs; Appendix B). The simulations we presented

throughout this paper consisted of 992 points (31 sites

and 32 species), and the PGLMMs were fit in a minute or

two on an old laptop. For much larger problems (e.g.,

10 000 points), however, calculations will be slow. It is

also possible to place PGLMMs in a Bayesian estimation

framework and use Markov Chain Monte Carlo

(MCMC) approaches (Gelman and Hill 2007). Com-

paring among different estimation approaches, however,

is beyond the scope of the present work.

PGLMMs have the flexibility to be constructed to

address numerous questions. Although we have focused

TABLE 6. Conditional probability that species 1 occurs in site 1
given the presence or absence of phylogenetically related
species (species 2–6) in site 1 (species from left to right in Fig.
6).

Species Present Absent

No information 0.38 0.38
2 0.48 0.33
2, 3 0.54 0.29
2, 3, 4 0.59 0.26
2, 3, 4, 5 0.61 0.25
2, 3, 4, 5, 6 0.64 0.23

Notes: The column labeled ‘‘Present’’ gives the probability
that species 1 occurs given that the listed species are known to
be present, and the column labeled ‘‘Absent’’ gives the cases
when the listed species are absent. Probabilities were calculated
from the model fit in Table 5.
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on presence/absence data, abundances can equally be

used. If species abundances are often low, then it is

possible to formulate the PGLMMs under the assump-

tion that the response variable (number of individuals of

a given species in a site) are Poisson distributed (Gelman

and Hill 2007). If present populations are large, then the

distribution of the response variable becomes problem-

atic, because it will likely consist of either zeros or large

values. In this situation, zero-inflated distributions can

be used, although these will require more complex

estimation approaches (Gelman and Hill 2007). On the

other hand, if there are few zeros (absences) in the data,

then the distribution of densities among sites (or some

transformation thereof ) might be Gaussian, in which

case more-simple linear mixed models (LMMs) could be

applied. In a phylogenetic context, these would be

similar to phylogenetic regressions with phylogenetic

signal in the residuals (Gage and Freckleton 2003,

Duncan et al. 2007, Lavin et al. 2008, Revell 2010).

Because PGLMMs are built on covariance matrices,

other sources of data correlations can be included. In

particular, spatial correlations that could arise from

dispersal limitation or biogeographic history could be

included in a covariance matrix (Cressie 1991, Ives and

Zhu 2006). Similarly, temporal fluctuations in species

abundances generate autocorrelations that can be

represented by covariance matrices. Helmus et al.

(2010) recently investigated the population dynamics

of zooplankton species in several lakes, showing that

whole-lake experimental manipulations decreased the

phylogenetic diversity of communities. A PGLMM for

this type of data could be used to get more information

at the species level to explain changes in communities in

response to disturbances.

The main message we wish to convey is that fitting

models to data is almost always more informative and

statistically powerful than the metric/randomization

approach that permeates not just analyses of phyloge-

netic community structure, but also community ecology

in general. Recent development of statistical approaches

and increased computing power open up possibilities

that were unimaginable even 10 years ago. While model-

based inferential approaches require users to have a

moderate amount of statistical background, GLMMs

are becoming commonplace in ecological and evolu-

tionary studies (Bolker et al. 2009), and PGLMMs

introduce few challenges beyond those already mastered

by many ecologists and evolutionary biologists.
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SUPPLEMENT
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